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Abstract

Developing efficient airlift plans for lare operations is difficuilt even for expe-

rienced planners. Time is often critical and days or hours may make the difference

between success and failure. Airlift plans are developed and refined through a repet-

itive cycle to produce usable schedules. A planner selects reso, ices for a plan, devel-

ops a trial schedule, and analyzes the schedule for weaknesses. This process is very

time-consuming and a method is needed to analyze airlift plans and provide useful

feedback early in the planning process. Temporal reasoning provides a general mech-

anism for such analysis. Different types of temporal constraints can be inserted into

a network of airlift events to provide time bounds on execution of the complete plan.

For this purpose we developed a general temporal constraint reasoner and a set of

mechanisms for deriving temporal information from airlift requirements and partial

schedule specifications. Physical limitations of the aircraft and operating facilities

as well as the availability of cargo all provide constraints on when certain events

may occur. These constraints may be the time required to fly from one location to

another or the time spent waiting for an aircraft to be loaded. Comparing cargo

requirements with airlift capacity over time provides additional constraints. The

advantage of using a temporal constraint network as the underlying representation

is its ability to accommodate various sources of information about time relationships

between events in a plan. By asserting temporal information about specific events

in an airlift plan, the planner can assess the impact of high-level planning decisions.
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TEMPORAL CONSTRAINT PROPAGATION FOR

AIRLIFT PLANNING ANALYSIS

I. INTRODUCTION

Background

Even the most experienced airlift planners find it difficult to develop an effi-

cient plan for large operations. In a wartime environment, time is critical and days

or even hours may determine the difference between success and failure. Develop-

ing an effective wartime airlift plan may require several weeks or more. The sheer

complexity of the schedule and the number of choices available to the planner con-

tribute significantly to the time required to produce an efficient plan. It simply is

not possible to evaluate all possibilities for a large operation in a reasonable amount

of time. As a result, airlift planning follows a hierarchical process. General plans

are developed from scratch and then refined to produce a final schedule. A seem-

ingly insignificant choice, made early in the planning process, may make a significant

difference in the operationAl effectiveness of a plan.

Military Airlift Command (MAC) uses a program called MACPLAN to aid in

developing deliberate airlift plans (2). MACPLAN is a planning tool developed for

MAC by the MITRE Corporation. MACPLAN provides the human planner with an

automated, menu-driven program for selecting aircraft and operating units to satisfy

a given set of requirements. The planner makes the decisions and saves them using

MACPLAN. Plans developed using MACPLAN are easy to change because the plan

only needs to be modified in MACPLAN instead of being redeveloped. MACPLAN

does not provide a detailed schedule, but instead provides a list of resources and

requiirements, called a planset. A planset consists of a list of requirements and a
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list of aircraft and operating units with the number and type of aircraft specified for

each day. A planset may be analyzed using MACPLAN to check the capacity of the

chosen aircraft and to make sure the specified routes are within the flying range of

the aircraft selected. Once a planset is generated, it is passed to FLOGEN (FLOw

GENerator) for development of a specific timeline and final analysis by forward

simulatio,.. FLOGEN takes several hours to develop a schedule from a given planset.

One poor choice in the planset may cause the schedule to be infeasible and require

detailed manual analysis followed by another run on FLOGEN. This process may

be repeated several times before an acceptable plan is found. For this reason. it

is desirable that the planset given to FLOGEN be as close to a finished plan as

possible.

Problem

The goal of this thesis is timely evalui&tton of a given planset to determine its

feasibility and efficiency without using FLOGEN. The current analysis capability

of MACPLAN had to be improved to accomplish this. MACPLAN provides the

capability to evaluate such factors as total aircraft load capacity for each day, aircraft

range, and the capacity of each ground station. MACPLAN's analysis provides a

lower bound on the daily backlog of cargo which cannot be transported on the

required dates. This backlog is based on a gross estimate of the airlift capacity

provided for each day minus the requirements for that day. Anl analysis considering

each individual requirement's source and destination would provide a more realistic

backlog estimate. For example, if two requiremerts werc listed on one day as going

to different places and only one aircraft were scheduled for that day, MACPLAN

would not show a backlog if both requirements would fit on the plane. However, it

is obvious that one plane cannot be in two different places at the same time. Their

relative locations would dictate the feasibility of satisfving both requirements iII one

day.
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Currently, a planset is passed through FLOGEN to generate a schedule with

the necessary detail for a useful analysis. By using a temporal reasoning sy. tem. the

time constraints inherent in the requirements and physical limitations of the aircraft

and ground stations can be Loserted into a temporal network. This network provides

more accurate measurements of the time required to transport each requirement

than is provided by MACPLAN because of the additional detail considered in the

temporal network. A temporal reasoning system is a good candidate for solving this

type of problem because it integrates all constraints into a single network regardless

of the source of the constraint.

Objective

An efficient method is r. eded to evaluate a proposed airlift planset for feasi-

bility and efficiency before refining it to a completely specified schedule. A temporal

reasoning system may provide useful information for analyzing general airlif" plans

without simulation by examining the times required to transport each requirement

with the aircraft obligated in a planset. The times can then be translated into a

temporal network of time-points and duratiors between the time-points. This al-

lows the planner to analyze the planset and fix problem areas before performing a

time-consuming FLOGEN schedule generation.

Analysis of an airlift plan early in the process is the objective of this thesis. A

temporal reasoning system is proposed to analyze a high-level plan and to provide

,useful information about possible shortcomings of the plan. Additional information

can be found using a more careful analysis of cargo requirements versus airlift ca-

pacity. These two techniques used together prvide a useful analysis ,,f airlift plans

early in the planning process, thereby saving valuable time.
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Scope

A general-purpose temporal reasoning system was developed as well as an in-

terface to extract MACPLAN information and represent it in the temporal network.

The capability to provide a detailed analysis of the airlift ,,;Jol versus the daily

requirements was also developed. These two 3 ystems together provide more detailed

information about a planset than MACPLAN provides. The temporal network pro-

vides an optimistic measurement of the time required to complete the plan while

the backlog analysi:; provides an optimistic measurement of how much cargo can be

moved on each day. This thesis is directed at providing an analysis of a developed

planset which should yield a better estimate of the actual timie required to execute

the plan than does the estimate given by MACPLAN.

The program is written in Common LISP for the Symbolics computer. MAC-

PLAN runs on the Symbolics and the temporal reasoning system was developed on

the same machine in order to read MACPLAN data. Using Common LISP allows

re-use of any useful code used in MACPLAN as well as exportability of code to other

machines supporting Common LISP.

Approach/Methodology

Development of the enhanced analysis facility consisted of the following steps:

" Develop and test a temporal reasoning system.

* Develop a detailed analysis of cargo requirements versus airlift capacity.

" Interface the temporal reasoning and cargo analysis to MACPLAN.

" Evaluate the results.

The temporal reasoning system maintains information about the relationships be-

tween certain instances of events, or time-points. A detailed analysis of cargo re-

quirements versus airlift capacity determines how much cargo can be moved with
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available aircraft. The interface module reads a plariset and asserts constraints

about the relationships of time-points in the plan into the temporal network.

The temporal reasoning system is based on the temporal constraint repre-

sentation scheme discussed by Dechter et al. (2). Time-points and durations are

represented as nodes and links in the network. Time-points represent specific events

such as take-offs, landings, or the onloading of cargo. Durations represent a bound

on the time between two time-points. A typical assertion may be that an airplane

may land between three and four hours after it takes off. These assertions are based

on the constraints in the database such as aircraft type, ground station capabilities.

cargo tonnage, the earliest available date for cargo. or the range of a specific aircraft.

The cargo analysis estimates how much of the daily cargo requirements can be

transported using the available aircraft. Each requirement is mapped onto aircraft

until either all cargo is moved or no aircraft are left. If an aircraft is not loaded to

full capacity, part of the available airlift capability is not used. This reflects the real

life constraint of using aircraft to transport needed cargo even when the aircraft are

not full.

The interface module reads the MACPLAN database and extracts information

such as aircraft type, onload station, offload station, and earliest available date. The

system then generates time-points for the significant events of each requirement and

aerts durations between these points based on the constraints in the data base.

The system reads each requirement and maps the aircraft allotted in the planset to

the cargo listed until either all of the cargo is moved or there are no more aircraft

left. After all assertions are made into the temporal network, the system may be

queried to find bounds on the predicted execution time for the system. Queries

may also be made for the relative execution times of any two time-points in the

network. For example, suppose a planner wanted to know the earliest time that a

specific requirement could he delivered to its destination. A simple query provides

a window of times between which the cargo may be delivered. The first time would
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be the most optimistic and the second would be the worst possible case given all of

the constraints posted. The worst possible case is usually infinity since the system

constrains the event only with a lower bound and not an upper bound.

The predicted execution times generated by the temporal reasoner are expected

to be greater than those predicted using MACPLAN. This is because MACPLAN

uses less detail about the actual schedule in predicting execution times than is con-

sidered by the temporal reasoning system. MACPLAN and the temporal reasoning

system work from the same database and both are estimators of partially specified

schedules.

Materials and Equipment

A Symbolics 3600 computer using Common LISP was used to develop all

code for this thesis. Version 18.0 of the MACPLAN program was obtained through

WRDC/TXI as well as the plansets used to compare results.

Overview of the Thesis

This thesis describes a preliminary deliberate airlift plan analysis tool. Chap-

ter 2 provides some detailed background on how current deliberate airlift planning

is accomplished with MACPLAN. Chapter 3 reviews current temporal constraint

representations and propagation techniques. Chapter 4 details the design and opera-

tion of the developed deliberate airlift analysis system. Both the temporal reasoning

system and the capacity analyzing system are described. Chapter 5 discusses the

problems encountered in developing the system and the results obtained. Chap-

ter 6 lists proposed enhancements to the system and recommendations for further

research.
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II. THE MACPLAN FRAMEWORK FOR AIRLIFT

SCHED ULING

Introduction

Military Airlift Command (MAC) is responsible for the development of airlift

plans to support both wartime and peacetime requirements of the unified and speci-

fied commands as directed by the Joint Operations Planning System (JOPS). JOPS

is the Department of Defense directed, Joint Chiefs of Staff specified system used in

planning global and regional joint military operations, except the Single Integrated

Operation Plans (SIOP). There are two types of planning performed at MAC: Cri-

sis Action System (CAS) planning, and deliberate planning. Planning performed

during peacetime is called deliberate planning, while CAS planning occurs during

contingency and crisis situations in support of other unified and specified commands.

This thesis deals only with deliberate planning. The purpose of deliberate

planning at MAC is to identify the total movement requirements, to describe them in

logistic terms, to simulate the strategic deployment, and to produce a transportation-

feasible Operation Plan (OPLAN) (1). An OPLAN is any plan, except the SIOP, for

the conduct of a single military operation or series of connected operations prepared

by the commander of a unified or specified command in response to a requirement

established by the Joint Chiefs of Staff.

MACPLAN Operation

Deliberate airlift planning is currently performed by experienced planners at

HQ MAC using MACPLAN and FLOGEN. These two programs together allow

planners to take a set of requirements, identify a force package of particular types of

aircraft, and generate a schedule to move the requirements with the specified aircraft.

MACPLAN aids the planner in assembling the force package and FLOGEN generates
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a schedule with the output of MACPLAN. If problems are found after analyzing

the FLOGEN output, another cycle through the process is required to develop an

acceptable plan. This process may take several days to develop a plan that is efficient

and satisfies all requirements.

MACPLAN provides an automated tool for airlift planners to use in developing

a force package to satisfy a set of requirements (4). MACPLAN's automation of this

process provides an easier way to select and record these choices than direct encoding

in FLOGEN format. Analysis capabilities in MACPLAN include range checking of

the routes which must be flown, gross capacity checking for the aircraft selected,

and aircraft compatibility with the ground stations selected. These features are

limited in the amount of detail which is examined. The following sections describe

MACPLAN's database and operating concepts.

MACPLAN operates using predefined LISP objects. These objects are the

MACPLAN representation of the MAC world and contain information used by the

planner in making decisions. These objects are based on actual assets of MAC and

represent aircraft, airbases, and operational units. MACPLAN allows the planner to

load in previously recorded requirements and assemble a set of aircraft to move the

requirements. After selecting the aircraft, the planner chooses the routes to be flown

by the aircraft from their home bases to pick up the cargo, and then throughout

the journey to deliver the cargo. MACPLAN saves this as a planset containing the

force package, the paths to be flown, and information about the ground stations to

be visited.

The force package includes data about the aircraft to be used and the units that

operate the aircraft. The data includes numbers of aircraft for each day (staging),

configuration of each type of aircraft and other information about the aircraft. A

different force package object is created for each type of aircraft selected by the

planner. The information for the aircraft is itself an aircraft object contained in the

force package object. The aircraft object contains such information as aircraft name,
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($F (TYPE C141B) (WAA-TYPE C141) (FOUR-CHAR-MDS C141)
(UTE-RATE 10) (CREW-DAY "1600") (AUGMENTED-CREW-DAY "2400")
(CREW-REST-TIME "1200") (CREW-ALERT-TIME "0315") (TAS 425)
(TAKEOFF-FACTOR "0020") (MAX-RANGE "1110")
(CRITICAL-RANGE "0930") (COST-PER-HOUR 2520)
(ENGINE-RUNNING-OFFLOAD "0000") (ONLOAD-TIME "0215")
(OFFLOAD-TIME "0215") (ENROUTE-TIME "0215")
(AIR-REFUEL-TIME "0000") (AIR-DROP-TIME "0000")
(FUEL-i 15000) (FUEL-2 12500) (FUEL-3 12000)
(FUEL-CAPACITY 414000) (BULK-CAPACITY 24.0)
(OVERSIZE-CAPACITY 24.0) (OUTSIZE-CAPACITY 0)
(CRITICAL-CAPACITY 0) (LOWER-LOBE CAPACITY 0)
(PAX-CAPACITY 0) (ACCOMPANYING-CAPACITY 15)
(CONSTRAINT-i 10) (CONSTRAINT-2 30) (CONSTRAIFT-3 50)
(CATEGORY-CODE NIL) (DESIGNATION MILITARY))

Figure 2.1. Aircraft Object Representation

aircraft capacities for different types of cargo, true air speed, range, and onload and

offload times. MACPLAN maintains aircraft objects for all types of aircraft available

to the planner. When selected by the planner, the aircraft objects are placed into a

force package and saved in a planset along with the requirements. A representation

of a sample aircraft object is shown in Figure 2.1.

The requirements are lists containing amounts of cargo which must be moved

from one station to another within specified periods of time. These requirements

include data such as load designator, onload station, offload station, earliest available

date, earliest arrival time, latest arrival time, and cargo-listings. A representation of

an example requirement is shown in Figure 2.2.

The load designator is simply a number, such as R15, used to uniquely iden-

tify each requirement. The onload-station and offload-station fields are actual station

objects in MACPLAN. The onload-station specifies where the cargo listed in the

requirement is to be loaded onto an aircraft, or the source, and the offload-station
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($F (LOAD-DESIGNATOR R24) (ONLOAD-STATION KSLC)

(OFFLOAD-STATION EGUL) (AVAILABLE-TIME CO00)

(EARLIEST-ARRIVAL-TIME CC005) (LATEST-ARRIVAL-TIME C007)
(PRIORITY 001) (BULK-CARGO 0) (OVERSIZE-CARGO 0)

(OUTSIZE-CARGO 15) (PAX 0) (MIN-LAUNCH-INTERVAL "0030")

(MAX-LAUNCH-INTERVAL "0400") (fYPE-OFFLOAD ENGINE-RUNNING)
(ONLOAD-LOCATION-CODE ORIGIN) (OFFLOAD-LOCATION-CODE

DESTINATION) (MISSION-PREFIX NIL) (ACFT-PERMISSION-TYPE

NONE) (ACFT-CATEGORY-CODES NIL))

Figure 2.2. Requirement Object Representation

($F (ICAO KFFO) (NAME "WRIGHT-PATTERSON AFB") (COUNTRY-CODE

39) (GEO-CODE ZHTV) (LATITUDE "39 49N") (LONGITUDE "84 02W")
(STATION-LOGISTIC-PERMISSION NIL) (CONSTRAINT-TYPE 1)
(CONSTRAINT-FACTOR 100) (STERILE-START "0000") (STERILE-

STOP "0000") (INTERVAL-TYPE ARRIVAL) (MAX-GROUND-TIME "0830)
(ARRIVAL-DEPARTURE-INTERVAL "0030") (NUMBER-ACFT-PERMITTED-

PER-INTERVAL 1) (AERIAL-PORT-DESIGNATOR P)

(SPECIAL-DESIGNATOR ENGINE-RUNNING) (LOGISTIC-CODE NIL)

(CONSTRAINT-CARGO 999999) (CONSTRAINT-PAX 999999) (TYPE AFB))

Figure 2.3. Station Object Representation

specifies where the cargo needs to be transported to, or the destination. Each sta-

tion object contains all necessary information about the particular ground station

specified. This information includes the ICAO code (four-letter station designator),

name of the airport, country, geographic code, latitude, and longitude. A station

object representation is shown in Figure 2.3.

Other objects in MACPLAN include groups, paths, links, permissions, and

UTE&JSCP tables (utilization rate for the aircraft fleet). Groups are lists of stations

that are close together in distance. For example, all stations in the eastern United
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States might be contained in a group called Eastern-US. Paths are lists of groups

specifying the path followed by a requirement from its source to its destination.

They can also include enroute groups if the distance from the source station to

the destination station is too great to make in one flight. Links are segments of

a path linking one station or group to another station or group. Paths among

different groups may share a common link, but each path is between only two groups.

Permissions contain the characteristics of a given station such as maximum size of

aircraft that can be handled on the runway or the maximum number of aircraft

allowed on the ground simultaneously. The UTE&JSCP objects specify the UTE, or

utilization rate of the aircraft. If a type of aircraft can only be flown ten hours a day

on average, the UTE rate for that aircraft is listed as ten. This forces MACPLAN to

allot a realistic number of ton-miles per day to each aircraft when computing airlift

capability.

The Planning Process with MACPLAN

A planner begins the planning operation with a set of requirements. These

requirements may be troops, jeeps, tanks, or any other type of cargo which must

be moved from one location to another. Most plans include large amounts of cargo

from many different locations and may span several months. These requirements are

loaded into MACPLAN, which takes each requirement and adds it to a list of cargo

arriving and leaving each station. The cargo originating at that station is kept in

a delivery-list and the arriving cargo is stored in an arrival list. The delivery list is

broken down into lists of cargo going to different stations.

The requirements are also broken down into a normalized list, called norm-

delivery-list and a list of tons, called delivery-list. The norm-delivery-list is a list of

the 1000-ton-miles per day and the delivery-list is simply a list of the tons of cargo

which need to be moved. All cargo is listed in tons except for passengers which

is listed in the number of passengers. The normalized passenger requirement is in
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1000-troop-miles per da,.

After loading the requirements, the planner forms groups from the stations

listed in the requirements. This can be done manually by the planner or automat-

ically by MACPLAN, which forms the groups by country. All stations in England

will be in their own group, but for large countries like the United States the groups

are divided by regions such as southwest or northeast. These groups are designated

as to-from groups because the requirements are either going to or from one of these

groups to another. MACPLAN considers all stations in a group as one when con-

sidering paths or distances from one group or station to another. The creation of

groups allows MACPLAN to consider fewer objects when creating paths between

stations. The paths are from group to group instead of from station to station.

After forming to-from groups, the planner selects aircraft to move the require-

ments. MACPLAN does not offer any help in selecting the aircraft or the operating

units used to move certain cargo. It allows the planner to create a force package

without any C-5 aircraft even if the requirements include outsize cargo and a C-5

is the only aircraft capable of transporting outsize cargo. After selecting a type of

aircraft, such as C141-B, the planner must Qelect an operating unit for the aircraft.

MACPLAN provides a list of all operating units for each specific type of aircraft for

the planner to choose from.

The next step in assembling a planset is creating paths to be flown by the

aircraft selected in the previous step. Paths can be automatically generated by

MACPLAN between all groups in the data base. Once the paths are generated,

range checks must be performed to insure that the aircraft selected are able to fly

the distances between groups. If an aircraft selected is not capable of flying the

range necessary, enroute groups or stations must be added to the path to break the

flight into shorter lengths. MACPLAN does not create separate paths for aircraft

with longer ranges. All aircraft selected must be capable of flying all paths created

or a range violation is generated.
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Once the range checks are completed and all paths are of a suitable distance,

the number of aircraft needed each day must be chosen. The planner selects the

number of aircraft to be provided by each unit. If there are two different operators

of C-5s, the planner has to decide how many planes each unit will provide.

After selecting the number of aircraft for each day the planner performs a

capacity check against the requirements. This creates a graph comparing airlift

capacity with requirements showing any backlog of unmoved cargo. This backlog is

computed by comparing the normalized requirements, which are in units of 1000-

ton-miles per day, with the normalized airlift capability. If there is an unacceptable

backlog or surplus of aircraft, the planner may change the staging of aircraft to

eliminate the problem.

When the planner is satisfied with the force package selected to satisfy the

requirements, it is saved into a planset. The planset includes the force package and

operating units as well as the paths to be flown. This planset is sent to FLOGEN

to generate a schedule from the supplied information to determine how well the

requirements can be moved with the specified resources. FLOGEN takes a planset

from MACPLAN and generates a day to day schedule with the planes and cargo

involved by forward discrete-event simulation. This schedule takes into account all

of the constraints for each plane and station. The resulting schedule is similar to an

airline schedule with exact takeoff and landing times for each aircraft in the plan.

These schedules are manually analyzed for inefficiencies or bottlenecks and the plan

is modified accordingly. This cycle is repeated until a satisfactory plan is created.

Current Analysis Capabilities

The analysis capabilities of MACPLAN are limited to range checking, capac-

ity checking (also called workload estimation), and a preflow analyzer. The range

checker simply checks the routing network for any paths too long for an aircraft to

fly. The capacity checker compares the normalized requirements against the normal-
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ized airlift capability to provide a backlog graph. The preflow analyzer is designed

to be a FLOGEN simulator, but did not work on the release of NIACPLAN used.

The capacity checker in MACPLAN compares the normalized requirements

against the normalized airlift capability. When computing the normalized require-

ments, MACPLAN takes each type of cargo in each requirement and divides this

by the number of days in the delivery window for the requirement. The delivery

window is computed by subtracting the available date from the latest arrival date

and adding one. This gives the number of days which are available for transporting

this requirement. For example, if a requirement is available on day 5 of the plan

and must be delivered by day 7, the delivery window is three days. The number

found by dividing the tons of cargo by the delivery window is the number of tons (or

passengers) which must be moved on the average for each day the requirement can

be moved. This number is multiplied by the distance between the onload and offload

stations of the requirement. This gives the number of ton-miles per day which mus

be moved. This number is divided by 1000 to produce a normalized figure of 1000-

ton-miles per day. The normalized requirements are then added together for all of

the requirements which are on the same days to produce a normalized requirements

list for each day of the plan.

The airlift capability is produced by adding together the capacities of all air-

craft which are selected for each day. The totals are computed for each type of

aircraft and then added together for each type of cargo to produce an airlift capa-

bility for each day. The cargo capacity of each type of aircraft is multiplied by the

number of aircraft sourced for that day, the UTE rate for the aircraft (in hours),

the true air speed of the aircraft (in miles/hour), and a round trip factor and then

divided by 1000 miles. The factor is 0.47, which accounts for each aircraft having to

make at least half of each round trip empty.

After computing the normalized requirements and airlift capability, the backlog

for each day is found by subtracting the requirements from the airlift capability. If

2-8



there is a surplus of airlift on any day and a backlog of requirements, the surplus is

used to deplete the backlog. This produces an estimate of how many requirements

can be moved on each day by the force package selected and an estimate of when each

requirement can be moved to its destination. This estimate is optimistic because it

assumes each aircraft operates at full capacity for each flight.
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III. TEMPORAL CONSTRAINT SYSTEMS AND

CONSTRAINT PROPAGATION

Introduction

Deciding when to perform certain actions to make the most efficient use of

available time has always been a problem. Using computers to reason about time

can significantly increase the number of choices that can be analyzed. Several meth-

ods of reasoning about time are suitable for application to airlift planning analysis.

These methods are temporal constraint propagation and constraint processing clus-

tering schemes. Temporal constraint propagation allows constraints between events

to propagate through a network and to determine relationships among related events

in time. Using a temporal reasoning system to constrain these events allows multiple

sequences of events to be searched to find the most efficient sequence. Clustering

schemes simplify the constraint propagation in large networks by limiting propaga-

tion to occur only between specified events. The time required to evaluate airlift

schedules can be dramatically reduced using these techniques.

Timporal Constraint Networks

Introduction. Temporal constraints represent bounds on the time that passes

between two events. A network of temporal constraints expresses the possible times

that events may occur relative to other events in the network. For example, suppose

it takes between 10 and 20 minutes to take a shower, between 15 and 20 minutes

to eat breakfast and between 25 and 45 minutes to get to work. If you get out of

bed at 6 A.M., you will arrive at work sometime between 6:50 and 7:25 A.M. Any

known information constrains the possible event times even further. If your shower

takes only 10 minutes, ye r arrival time is now limited to between 6:50 and 7:15.

Dechter et al. (2) describe a formal method to represent events and build a temporal

reasoning system to solve such networks in polynomial time.

3-1



The temporal reasoning system described consists of a temporal knowledge

base, a routine to check its consistency, a query answering mechanism, and an in-

ference mechanism capable of discovering new information. The knowledge base

contains propositions to which temporal intervals are assigned. A proposition may

be "I was driving the car" or -the book was on the table" with mich interval rep-

resenting the time period during which the cor-esponding proposition is true. The

temnporal information may be relative (I had breakfast before I took a shower) or

metric in nature (I slept for exactly 8 hours). Placing con.raints on the begin-

ning and ending time-points defining an interval during which a proposition is true

provides a means of expressing temporal information about the proposition.

If X1 and X2 are two time-points, the temporal distance ketween them may

be expressed as X 1 - X2 < c, where c is the maximum time that can elapse between

the two events. Expressing the distance between multiple time-points gives us a set

of linear inequalities on the time-points under consideration. If the time-points X1

and X2 represent the interval corresponding to the proposition "John was going to

work" and we know John rides the bus which takes between 30 and 40 minutes to

get John to work, the inequality

30 < X2 - X'I < 40

represents this interval. Disjunctions must also be represented in the system. Sup-

pose John could also carpool to work which takes between 45 and 50 minutes. This

interval would then be expressed as the set of inequalities

30 < X2 - X1 <40 or

45 < X2 - XI < 50.

The temporal reasoning system must he able to answer such questions as "Is

it possible that John left at 7:00 and arrived at work at 7:45?" or "If John arrived
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at work at 8:00, when could he have left his house?" A formal representation of

this problem based on temporal constraint satizfaction is introduced in the paper

with two methods of arriving at a solution. The first method is decomposition of

the temporal network and the second is using a relaxation algorithm to solve the

constraint network.

.4 Temporal Constraint Satisfaction Problem Model. A formal representation

for a temporal constraint satisfaction problem (TCSP) is described below. A tem-

poral constraint satisfaction problem (TCSP) involves a set of temporal variables

representing time-points and unary and binary constraints on these variables ex-

pressed in terms of temporal distance. A binary temporal constraint, T12 = (a, b),

between the variables XI and X2 indicates the permissible values for the temporal

distance X2 - X1, expressed by the inequality

a < X2 -X1 < b.

A unary temporal constraint, T = (a, b), on X1 indicates permissible values

for the occurrence of XI, expressed as the inequality

a <X I <b.

A network of temporal constraints can be represented by a directed temporal

constraint graph, whose nodes represent temporal variables and whose edges repre-

sent constraints on the temporal distance between the variables. Figure 3.1 shows a

sample temporal constraint network expressing the example described earlier about

John going to work. Node 1 represents John getting up, node 2 represents finishing

the shower, node 3 represents finishing breakfast, and node 4 represents arriving at

work. A solution to this network is a set of values which can be assigned to the

edgcE between the nodes and which satisfies all constraints. Assigning the values 15,
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N O E( 1 5 , 2 0 )

(10,20) (25,45)

NODE NODE
1 4

Figure 3.1. Sample Temporal Constraint Network

18, and 30 to the edges between nodes 1-2, 2-3, and 3-4 respectively is one possible

solution to this network.

A feasible value is defined as any valid value for an edge in a solution set and

the set of all feasible values for a given variable is its minimal domain. A network is

consistent if at least one solution exists. The binary operations union, intersection,

and composition are defined for temporal constraints.

The union of two constraints, represented by T U S, consists of any values

allowed by either T or S. Intersection of two constraiints, T n S, allows only the

values which are allowed by both T and S. Composition of two constraints, T 0 S,

allows only the values (a,b) for which there is at least one value c such that (a,c) is

in T and (c,b) is in S. Constraint T is said to be tighter than constraint S if every

pair of values allowed by T is allowed by S. Two constraints are equivalent if they

3-4



represent the same set of solutions.

Another important property of constraint networks is decomposability (2). A

network is considered decomposable if and only if every variable can be assigned

any value allowable by the constraints on that variable and permit a solution to the

network. This property allows backtrack-free search in finding a solution. In other

words, once a variable is assigned a value, a solution can be found without changing

the value.

Given a network of binary constraints, the first problem is to determine if the

network is consistent, i.e., if a solution exists. If a solution exists, the minimal domain

of each variable should be found (find all possible values for each variable). Another

problem may be to find the relationship between two variables. Two approaches to

solving these pioblems are discussed in the next sections.

The Simple TCSP. A simple temporal constraint satisfaction problem

(STCSP) is one in which all constraints have a single disjunct, i.e., each bound

has only one possible interval. Since all constraints are a single interval, these prob-

lems can be solved in polynomial time by solving the set of inequalities associated

with the network. However, a simpler graph-based algorithm can be used to solve

this class of problems. The graph representation discussed is based on a distance

graph. Each node represents a temporal variable and the edges connecting the nodes

represent the maximum value of the time bound between the two nodes. Each edge

in the graph indicates a bound on the interval beuween the times of the original

and ending nodes. A negative bound implies that the originating node occurs after

the ending node. A distance graph showing John's morning schedule is shown in

Figure 3.2. The nodes represent the same events as in the earlier example. The dis-

tance graph indicates that John's shower is over between 10 and 15 minutes after his

getting out of bed. Summing up the edges from node 0 to node 4, we can determine

the maximum time after getting out of bed that John arrives at work. Summing
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up the edges from node 4 to node 1 determines the maximum time after arriving at

work that John gets out of bed. This number is negative, which means John gets

out of bed at least this amount of time before arriving at work. These two sums

provide an interval in which John arrives at work after getting out of bed.

20

23

-15

20 -10 -25 45

/NODE (NODE)

Figure 3.2. Time Distance Graph

Dechter et al. (2) present and prove several theorems. The first theorem states

that a distance graph is consistent if and only if it contains no negative cycles. The

second is that any consistent simple TCSP is decomposable relative to constraints

specified by its distance-graph representation. Theorem 2 provides an efficient algo-

rithm for finding a solution to a simple TCSP. Since the TCSP is decomposable, we

can assign any value satisfying the distance graph constraints to each variable. The

domains characterized by the distance graph are also minimal for the TCSP. Proof
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of these theorems is discussed in the referenced paper. This problem can now be

solved by applying Floyd-Warshall's all-pairs-shortest-paths algorithm (2). This al-

gorithm runs to completion in time O(n 3) and negative cycles are easily found. This

is a polynomial time algorithm for determining the consistency of a simple TCSP,

finding a solution, and determining the minimal domains and minimal network.

.1 Dccoitposition Method fr., Solviny h, TCSP. Dcchter et at. pilt forth a

method to solve a general TCSP by decomposing it into several simple TCSPs,

solving each one, and combining the results (2). Given a network of binary temporal

constraints, T, a labeling of T is defined as a selection of one interval from each

constraint. This method allows for disjunctive constraints with different labellings.

Each possible labeling represents a simple TCSP which can be solved by the method

described in the previous section. The TCSP is consistent if at least one of the

labelings of the network is consistent. The minimal network of T can be determined

by finding the union of all simple TCSPs which are consistent. The complexity of

solving a TCSP in this manner is 0(nke), where k is the maximum number of

disjunct intervals of an edge and e is the number of edges in the constraint graph.

Although this is worst-case complexity, several techniques can be employed to reduce

the required computation in many cases.

A Relazation Method for Solving the TCSP. The decomposition method suf-

fers from two drawbacks. First, the techniques used to solve the network do not

exploit the fact that each labeling differs from other labelings by only a small num-

ber of constraints. Each labeling is solved from the beginning with no computational

savings even if it is almost identical to the previous labeling. Second, the process

of translating each labeling into a distance graph may be cumbersome in practice.

An alternative method for solving the TCSP, applicable directly to the original con-

straint graph, is discussed in the following sections.

The all-pairs-shortest-paths algorithm discussed in the previous section can be
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considered a relaxation algorithm: at every step the value of an edge is updated

by an amount depending only on the current values of adjacent edges. A relaxation

algorithm that enforces path consistency on TCSPs is described in the paper. A path

consistency algorithm was described by Dechter et al. (2) and shown to be identical

to applying Floyd- Warshall's all-pairs-shortest-path algorithm to the distance graph

of a TCSP.

The algorithm discussed was put forth as an attempt to simplify the compu-

tation time to solve a TCSP. There are several questions still unanswered about

the algorithm. Although not proven by Dechter et al. they believe the algorithm

converges to a solution in an efficient amount of time.

Constraint Propagation

Planning and scheduling problems typically have numerous constraints from

a variety of sources. Constraints can come from the availability of resources or

the limitations of the resources used. One method used to solve such problems

is constraint propagation, sometimes called relaxation (7). Constraint Propagation

systematically eliminates values which are not possible based on multiple constraints

until a solution is found. A constraint propagation problem is specified by a set of

variables and a set of constraints limiting the values the variables can take on (5).

Specifying a value for one variable may limit the possible values fr other variables.

A solution to a constraint propagation problem is a set of values which does not

violate any constraints.

Constraint propagation arrives at a solution by choosing a set of values for

one variable and propagating those values to all other constraints involving that

variable, eliminating any values which do not satisfy all variables simultaneously.

Repeated applications of this method to all variables either arrives at a possible

solution or eliminates all choices for a variable. If all possible choices for a variable

are eliminated, there is no solution to the problem.
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An example constraint propagation problem is the cryptarithmetic problem

where letters are used to represent numeric digits in a mathematical equation. One

such problem is listed below:

SEND
+MORE

MONEY

A solution to the problem is found when a digit is substituted for each occurrence of

a letter and the resulting equation is mathematically correct. To solve this problem

with constraint propagation, we can let each letter have a set of possible digits

which they could represent. We would then represent each part of the problem as
aconstraint. One constraint would be that S + M + 0or 1 = MO. The0or 1

represents the carry from the column preceding S and M. By using all constraints,

values for each letter can be eliminated until all values left satisfy the constraints. All
letters can be any digit from 0 to 9 except the letters M and S. These letters cannot

be 0 because they are in the beginning of the numbers and numbers don't start with

0. We must also restrict the letter E to be a 5 if we want a single solution to the

problem. If we let C represent the carry from the ones column, 1 represent the

carry from the tens column and C100 represent the carry from the hundreds column,

the possibilities for each variable are shown below.

M: [1,2,3,4,5,6,7,8,9]
S: [1,2,3,4,5,6,7,8,9]
0: [0,1,2,3,4,5,6,7,8,9]
E: [5]
N: [0,1,2,3,4,5,6,7,8,9]
R: [0,1,2,3,4,5,6,7,8,9]
D: [0,1,2,3,4,5,6,7,8,9]
Y: [0,1, 2,3,4,5,6,7,8,9]
CI: [0,1]
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CIO: [0,1]
CI00: [0,1]

The constraints effected by the equation are as follows:

I: D + E = Y + (10 * CI)
2: N + R + Cl = E + (10 * CO)
3: E + 0 + C10 = N + (10 * CI00)
4: S + M + C100 = 0 + (10 * M)
5: Each letter is a unique digit

By enforcing multiple constraints involving the same variable and eliminating any

possible values which do not satisfy all constraints, we can arrive at a solution. For

example, if we examine variable M first, constraints 4 and 5 mention M. The only

value of M satisfying constraint 4 is 1, since 0 is not in M's original possibility list,

and any value of M greater than 1 would make the right side of constraint 4 at

least 20, and there is no combination of S and C100 drawn from their possibility

lists whose sum plus 2 could be 20 or greater. We then select another variable and

eliminate values for it based on the possibilities of M already made. This process is

repeated for any variable with more than one possibility until a solution is reached.

The solution is shown below.

9567
+1085

10652

Constraint propagation can be applied to scheduling problems also. For exam-

pie, we have constraints on our daily schedule limiting the times when certain events

may occur. These constraints are imposed on us by the physical world around us

as well as by other people's actions. One such constraint is the time required to
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travel from home to work. By examining all of these constraints, we can arrive at a

workable schedule to accomplish our goals for each day. Although we don't normally

think of our daily schedule in such terms, these constraints must be considered if we

want a computer to generate a schedule for us.

Clustering Schemes

Constraint propagation reaches all time-points in a reference set. Deciding how

to cluster the time-points into reference sets has an impact on the time required to

propagate new constraints. If too many events are in each reference set, the com-

putation time increases to a point where performance is not satisfactory. With too

few events in each reference set, the system maintains fewer durations between time-

points and must rely on slower or less precise algorithms to calculate the constraints

on points in different reference sets.

There are several methods available for determining the clustering of events

into reference sets. Clustering based on the temporal relationships between events is

the simplest, but may not provide optimal performance. Dechter and Pearl describe a

tree-clustering scheme based on transforming a constraint graph into a tree structure

(3). Kohane describes an automatic method for clustering using heuristics to actively

change the clustering based on performance and the frequency of past queries (6).

Clustering based on relationships may be as simple as placing all events relating

to a certain object in the same reference set. This method is certainly simple to

implement, but the performance is related directly to the number of events related

to each object. The efficiency of a system clustered with this algorithm would most

likely be less than optimal.

The clustering scheme described by Dechter and Pearl transforms any con-

straint graph into a tree structure by removing redundant paths through the graph.

Each branch of the tree can then be clustered together for constraint propagation

within that cluster. This method is more complex than the previous one and again,
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the performance is related to the resulting tree structure. While providing improved

performance over no clustering, there is no guarantee that the optimal performance

is obtained.

Kohane's automatic clustering method monitors the performance of the system.

and when it degrades below a certain level, the system activates some heuristics

to cluster the points into reference sets to improve the system's efficiency. These

heuristics are based on the frequency of queries between points. The points which

have the most queries between them are placed into reference sets together. This

method, called "performance driven clustering," always provides a specified level of

performance (if possible).
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IV. Airlift Planning Analysis System

Introduction

The airlift planning analysis system designed in this thesis consists of two

parts: a temporal reasoning system and an airlift capacity analyzer. The temporal

reasoning system maintains information about times required to perform specific

actions in the plan and the capacity analyzer provides information constraining the

times between events. Together these two systems provide a method to analyze

preliminary airlift plans.

General Approach

The temporal reasoning system maintains information about time relation-

ships between events, or time-points. When any information constraining the time

relationship, or duration, between events is discovered, the system enforces this con-

straint on the events. If this information also constrains relationships with other

events, it is propagated to all affected events. For example, if we know it takes

five hours for a plane to fly from Los Angeles to New York and the plane departs

Los Angeles at 10:00 A.M. PST, it is not possible for the plane to arrive in New

York until at least 3:00 P.M. PST. The departure time plus the flight time place a

constraint on the the arrival time in New York. If the plane were continuing on to

London, we could also place a constraint on the earliest time for a London arrival.

Analyzing a set of airlift requirements provides a set of constraints on specific

events in the plan. Further constraints arise from examining the aircraft and operat-

ing units involved. The number and capacity of the planes involved limit how much

cargo can be transported on a given day.

Placing constraints gained from analyzing requirements and resources into the

temporal reasoning system provides information about when the plan may be com-
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pleted. This chapter describes the temporal reasoning system and the capacity an-

alyzer and how they work together to provide information about a suggested plan.

Temporal Reasoning System

An integral part of this project is the temporal reasoning system. This system

is capable of maintaining information about relationships among events or points

in time. After entering known constraints about the relationship between events.

the system provides a possible interval in which one event may occur with respect

to the other. Two time-points must be connected within the network to obtain a

possible relationship between them. The temporal reasoning system developed for

this project is based on the formal representation discussed in Chapter 3. There

are two types of objects in the system: time-points and durations. The time-points

represent events and the durations represent the time between events.

Design

The first object in the system, the time-point, is made up of a name, a list of

durations containing this time-point, a list of in-durations containing Jhis time-point.

and a reference set. A sample time-point is shown in Figure 4.1. The name of the

time-point is used for debugging purposes and to query the system about certain

time-points. The list of durations contains the duration objects (described in the

next paragraph) that have this time-point as their beginning. The in-durations list

contains duration objects that have this time-point as their end. The reference set

is an identifier clustering a set of time-points that are related in some way. All time-

points in a reference set contain durations to all other time-points in that reference

set.

The second object in the system, the duration, contains a beginning tine-

point, an ending time-point, and a list of bounds. A sample duration is shown in

Figure 4.2. The list of bounds may contain only one bound (representing a single
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NAME: SAMPLE-TIME-POINT
DURATIONS: (LIST OF DURATION OBJECTS)
IN-DURATIONS: (LIST OF DURATION OBJECTS)
REFERENCE-SET: (LIST OF REFERENCE SETS)

Figure 4.1. Sample Time-Point Object

TIME-POINT-i: BEGINNING TIME-POINT OBJECT
TIME-POINT-2: ENDING TIME-POINT OBJECT
BOUND: (LIST OF BOUNDS)

Figure 4.2. Sample Duration Object

interval) or multiple bounds (representing multiple intervals) limiting the time that

can elapse between two time-points. If more than one bound is present, the opposite

duration (from the ending time-point to the beginning time-point) must contain

the same number of bounds. These corresponding bounds define the possible time

intervals between the time-points and must not overlap. Time-points are connected

by durations which maintain the upper bound of the time that the ending time-

point is allowed to occur after the beginning time-point. For example if a duration

existed between two time-points, TI and T2, with an upper bound of 30 minutes,

we would say T2 will occur no more than 30 minutes after T1. An interval can be

established in which T2 must occur after T1 by asserting a duration from T2 to Ti

of -10 minutes. These two durations would limit T2 to an interval of between 10 and

30 minutes after Ti. It is possible to constrain the time between events to disjoint

intervals. For example, T2 could be constrained to occur either between 10 and :30

minutes after T1 or between 45 and 60 minutes after Ti. If these constraints were

imposed on the system, the query (Interval-constraint Ti T2) would return the

list ((10 30) (45 60)) as the possible intervals.
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The relationships among all time-points within a reference -et are always main-

tained by the temporal reasoning system. When a new bound is asserted on two

time-points in a reference set, it is propagated between the two original time-points

and all other time-points in the reference set by the functions Propagate-Fo -ward

and Propagate-Backward. The reference set limits the propagation to time-points

within a single reference set. When the propagation routine encounters a time-point

outside the reference set of the original time-point, the propagation halts. Some

time-points are in more than one reference set to insure that the durations are main-

tained for the boundary time-points between reference sets. This allows intervals to

be found between time-points in different reference sets.

Using reference sets reduces the computational complexity of propagating

bounds through the network. Dividing the time-points into reference sets provides

less information stored in the data base, but decreases the time required to asseit

information into it. The time savings are much greater than the bounds lest due to

using reference sets (6). Without reference sets, the number of bounds maintained

by the system grows with the square of the number of time-points. Using reference

sets decreases this growth to a linear relationship.

Figure 4.3 shows a sample network i:nvolving a flight from Los Angeles (LA) to

New York (NY) and continuing on to London (LON). The nodes represent takeoff

and landing at each city and are in the same reference set. The time spent on

the ground is ignored to simplify this example and takc)ff is immediately following

landing in NY. The current constraints are .5 hours from LA to NY and 9 hours from

NY to LON. The current constraint on the time from LA to LON is the sum of the

constraints in between, 14 hours. If the winds between LA and NY are favorable and

cut the flight time to 4 hours, tL ,' new constraint would then propagate through to

the LA to LON constraint and decrease the total to 13 hours. The system asserts

and maintains the duration from LA to LON because they are in the same reference

set even though a dicect assertion was not made between these events.
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14

Figure 4.3. Propagation Example

Propagate-Forward uses the Duration-List of the time-points it encounters to

propagate the new bound through the entire reference set. The new bound is added

to the next bound and if the resulting bound is more restrictive than the previous one;

it is changed and the propagation continues. In the above example, the new bound

from LA to NY (4 hours) is added to the existing bound from NY to LON (9 hours)

and the result (13 hours) is less than the current bound from LA to LON. Therefore,

the existing bound is changed to the new bound (13 hours). If another city was

present after LON, the new bound (13 hours) would be added to the next existing

bound to determine if it restricted the bound from LA to the next city. The system

calculates and maintains the bounds between all time-points in a reference set even

though these bounds may not be explicitly asserted. This process continues until

the resulting bounds no longer restrict the current bounds. Propagate-Backward

operates in the same manner, but uses the In-Duration-List of the time-points.

Operation

A temporal network can be built using time-points and durations. By using

the function Create-Time-point to create all desired time-points in a network and

then using the functions Assert-interval, Assert-Not-Interval, and Assert-Duration

to constrain the time-points, we can build a temporal network. The relationships
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between all time-points in a reference set are maintained by propagating the bound

through the entire reference set when a new bound is asserted between two time-

points in the reference set.

The function Create-Time-point creates a new time-point. The format for this

function is:

(create-time-point name reference-set)

The parameters required by Create-Time-point are a name and a reference zet for

the time-point. A new time-point is created with the name and reference set given

as parameters and with a duration list and in-duration list of NIL.

Assert-Duration asserts a bound on only one of the durations between two

time-points. The format for this function is:

(assert-duration T1 T2 bound)

This assertion restricts the time between TI and T2 no more than the value of

bound. After asserting the new bound, it is propagated through the system to

update all bounds which may be affected. If this bound cuts off an entire interval

from the current bounds, the reverse duration is changed accordingly. For example,

if the current possible intervals were ((10 30) (45 60)), and we assert a new upper

bound of 35, the resultant possible interval would then be ((10 30)).

The function Assert-Interval asserts two durations which constrain the second

time-point to occur within the given interval after the first time-point. The format

for this function is:

(assert-interval T1 T2 B1 B2)

B1 is the lower bound on the interval and B2 is the upper bound. The function

assert-interval actually asserts two bounds between the time-points using the Assert-

Duration function:

(assert-duration T1 T2 B2)
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(assert-duration T2 T1 -BI)

The first bound is a lower bound which gives the earliest time after the first

time-point at which the second time-point can occur. A negative bound allows the

second time-point to occur before the first time-point. TI second bound is the

largest amount of timc that can lapse between the first time point and the ,ecnd

time-point. If both bounds are negative, the second time-point must occur before the

first time-point. If the first bound is negative and the second is positive, the second

time-point may occur either before or after the first time-point; if both bounds are

positive, the second time-point is forced to occur after the first one.

Assert-Not-Interval asserts the proper bounds to insure that the second time-

point does not occur within the two given bounds after the first time-point. The

format for this function is:

(assert-not-interval T1 T2 B1 B2)

This function asserts two bounds on the durations between the two time-points. The

first bound asserted is on the duration from TI to T2 and is equal to bound 1. If

bound 1 is less than the current bound on this duration and bound 2 is less than the

current bound from T2 to T1, then bound 1 is added to the duration from TI to

T2. The new bound in this duration is a list containing two bounds and the reverse

duration must also contain two bounds on the interval. For example if the current

bounds limited the interval between TI and T2 to between 10 and 30 minutes. the

duration from T1 to T2 would have a bound of (30) and the reverse duration would

have a bound of (-10). If we then used assert-not-interval with bounds of 15 and

20, the new interval between the two time-points would be ((10 15) (20 30)). This

means T2 will occur either between 10 and 15 minutes after TI or between 20 and

30 minutes after T1. If one of the new bounds is outside the current interval, then

that duration would not change and the other duration would change to the new

bound.
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The system may be queried as to the interval between any two time-points by

using the function interval-constraint. The format for this function is:

(interval-constraint T1 T2)

This returns a list containing the bounds of the possible intervals within which T2

may happen with respect to T1.

Temporal Network Operation

For each requirement, time-points are created for each important event occur-

ring in the transportation of each type of cargo in the requirement. A time-point is

also created for the beginning of the plan and the end of the plan. The time-points

created are called BEGIN-PLAN, AVAILABLE-CARGO-RX, ONLOAD-CARGO-

RX, LAUNCII-CARGO-RX, LAND-CARGO-RX, OFFLOAD-CARGO-RX, and

END-PLAN. There are events for each possible type of cargo: bulk, oversize, outsize,

and pax (for passenger). The X in the RX stands for the load-designator of each

requirement such as R1 for the first requirement. The resulting time-points for the

bulk cargo in requirement RI would be AVAILABLE-BULK-R1 through OFFLOAD-

BULK-R1. For each requirement, durations are asserted from BEGIN-PLAN to the

AVAILABLE-CARGO-RX time-point and so on to the END-PLAN time-point. An

upper bound of infinity is used and is asserted as a bound of nil, which represents

no information on the bound.

A temporal network is built by using the function Analyze-plan begin end

where begin and end are calendar days specifying the interval to analyze the plan.

They must be in the format 'CXXX where XXX specifies the day relative to the

beginning of the plan. After asserting the network, the MACPLAN functions for

displaying the backlog graph are called with the information gathered by the capacity

analysis system. When the system starts, a duration is asserted from Begin-Plan

to each of the Available-Cargo-RX time-points with a bound computed from the

rules below. The capacity analysis system (described in the next section) is then
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called with the requirements for the first day of the plan. When a requirement is

completely moved as determined by the aircraft available, a duration is asserted from

the Available-cargo-RX time-point to the Onload-Cargo-RX time-point based

on the aircraft selected by the capacity analysis system. Part of a requirement may be

moved on one day with the rest of it remaining until several days later. These cases

are not asserted as moved until the entire cargo has been assigned to an aircraft and

classified as moved by the system. The next event in transporting the requirement is

the takeoff, which is calculated by the rules below. A flight time is then calculated for

the requirement based on the origin and destination stations of the requirement and

the selected aircraft. This time is asserted as the duration from Takeoff-Cargo-RX

and Landing-Cargo-RX. The type of aircraft selected is then used to determine

the offload time required and is asserted from the Landing-Cargo-RX time-point

to the Offload-Cargo-RX time-point. A final assertion is made from the Offload-

Cargo-RX time-point to the End-Plan time-point. The beginning and ending

time-points of the temporal network are now constrained by the times required to

move each of the requirements. The shortest possible time in which the entire plan

can be finished is found by the command (Interval-Constraint Begin-Plan End-

Plan). The earliest time that any one requirement is moved can be found by finding

the longest time of moving each of the four components of the requirement. If a

requirement does not have any bulk cargo, there are no restriction on those time-

points.

The following constraints are used t, post the durations between the time-

points created for each requirement in the database.

Begin-Plan to Available - The duration from begin-plan to available for

each requirement is bound by the time listed in the requirement as the available

time and infinity. The time in the requirement is listed in relative calendar time,

such as C004, denoting day 4 of the plan, and is converted to minutes to the earliest

time of the day listed. The "days-to-minutes-earliest" function is used to convert
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this time. The upper bound of infinity denotes no information on the longest time

required to perform this action.

Available to Onload - The available to onload duration is constrained by

the onload time for the aircraft used to carry the cargo listed in the requirement.

The shortest onload time is found by taking the shortest onload times for all planes

compatible with each different type of cargo and then taking the longest of these

onload times. This represents the shortest amount of time in which the cargo in this

requirement can be onloaded. An upper bound of infinity is used here also.

Onload to Launch - The onload to launch duration is constrained to be

between 0 and infinity. In other words, launch may be any time after onload. This

duration could be limited if more information about the time required to gain takeoff

clearance and perform all pre-takeoff functions were known.

Launch to Land - the duration from launch to land is constrained by the

time required for the selected aircraft to fly from the onload station to the offload

station using a path selected from the planset. The ground time at enroute stations

and prevailing winds are not accounted for in the present system. An upper bound

of infinity is used.

Land to Offload - The duration from land to offload is constrained to be

between the offload time for the selected aircraft and infinity.

Offload to End-plan - The duration asserted between these points is between

0 and infinity.

Capacity Analysis System

The capacity analysis system analyzes the cargo requirements and determines

how much cargo can be moved on each day of the plan using the number and type

of aircraft sourced for each day. When given a list of requirements, the system

determines the best aircraft to move each type of cargo. The aircraft selected is
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used to determine the times asserted into the temporal network as described in

the preceding section. The capacity analysis system starts each day with a list of

requirements sorted by cargo type as well as origin and destination. A list of the

aircraft available for that day is also accessible to the system. The requirements

for each day are assigned to the aircraft designated in the planset as available for

that day. The cargo is divided into four categories: bulk, oversize, outsize, and

passenger. Each type of cargo is considered separately and each is allotted aircraft

from the total number of aircraft for that day. If two C-5s and two 747s are sourced

for day 1, all four aircraft are considered when moving the bulk cargo and all four

are considered when moving the passenger cargo as well as the oversize and outsize

cargo. By not forcing attrition of the sourced aircraft after moving one type of cargo,

a better-than-best-case scenario is obtained.

After getting a list of all of one cargo type to be moved on a day, the largest

tonnage is considered first. Selecting the largest cargo first may not result in the

optimum efficiency in the final plan. There are other methods which can be used to

assign cargo to the aircraft, but only this method was used. The largest requirement

is assigned to the aircraft with the largest capacity which is greater than the cargo

tonnage. If 50 tons of bulk cargo are to be moved, and there are aircraft available

with 55 tons capacity and '75 tons capacity for bulk cargo, the aircraft with 55 tons

capacity will be selected. If the requirement were for 65 tons, the other aircraft would

be selected. If no single aircraft can carry the amount of cargo, the largest capacity

aircraft transports a full load and the rest is added back into the requirements list

for that day. The new list is then sorted in order of largest tonnage. If 85 tons of

bulk cargo were to be moved and the previous aircraft were available, 75 tons would

be moved and 10 tons would be added back into the requirements which would then

be sorted to consider the largest remaining requirement. The aircraft selected is

subtracted from the list of aircraft available on that day and the process is repeated.

After all cargo is moved or no aircraft remain, the remaining cargo, if any, is added
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to the list of cargo to be moved on the next day and the process begins again with

these requirements and a new list of :ircraft available on the new day.

The aircraft available on each day are considered to be available at any desired

location at the beginning of that day. The list of available aircraft comes directly

from the staging list developed by the MACPLAN planner. It is not realistic to allow

the aircraft to be anywhere, but this provides a method of determining if sufficient

airlift capability is provided on a daily basis.

The capacity analysis system calculates a daily backlog of unmoved cargo.

This backlog is based on the difference between the required amount of cargo to

be moved and the airlift capacity for that day. Several methods for calculating the

airlift capacity were developed and tested. The first method involved allocating

aircraft to move requirements based on a cumulative list of requirements for each

day. The second involved only the requirements which had not been moved plus the

requirements for each day.

Using a cumulative list of requirements for each day regardless of what was

already moved allows a best-possible airlift capability for each day with the given

requirements. If a requirement is moved on one day, it is still considered available on

the next day. By adopting this convention, we avoid capacity assessments based on

assumptions of previous allocation decisions. A cumulative requirements list allows

the cargo-aircraft matching algorithm to select from any of the requirements up to

that day to make the most efficient use of the aircraft available.

Using only the requirements for one day plus the unmoved cargo from previous

days allows the cargo-aircraft matching algorithm to choose from a reduced version

of the cumulative cargo list used in the previous section. Having fewer choices

means that more waste may be present in the final solution. However, this method

allows the system to track each requirement individually and when all of a certain

requirement has been moved, it is asserted into the temporal network.
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V. RESULTS

Status

The airlift plan analysis system was not completed to the point expected when

the project began. The temporal reasoning system is completely built and tested and

has no known bugs or problems. However, the capacity analysis system, although

it provides some useful data, did not reach the level of completion proposed at the

beginning of the thesis. The existing system by itself would be of minimal practical

benefit to an airlift planner.

Some of the difficulties encountered were the complexity of MACPLAN and

implementing the proposed analysis techniques. MACPLAN is a very large program

with many hidden assumptions underlying the actual code. Many of these assump-

tions were not well-documented and proved extremely elusive when MACPLAN was

examined in depth. Several of the initial designs for the capacity analysis system

provided erroneous or incomplete information, and the UTE rate for the aircraft

was extremely difficult to understand based on the written code. Many days were

spent tracking down subroutines, often discovering that more functions needed to be

traced to find the desired information. Some of the original ideas proposed to solve

the problem at hand were extremely difficult to implement. The capacity analysis

system was first conceived as an aggregate event analysis. The times required to

move a certain amount of cargo would be estimated based on the aggregate capa-

bility of the resources provided. A satisfactory method of calculating this aggregate

capability was not found.

Although the planning analysis system (toes not operate to the level envisioned,

the system as described in the preceding chapters is completely functional. The

temporal reasoning system functions as predicted at the start of the thesis. It is a

general-purpose temporal reasoner and can be interfaced to other applications. This
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system provides a very good beginning point for future research in the temporal

reasoning area. Future work will only require the addition of an application-specific

interface to assert the desired information into a temporal network.

The capacity analysis system provides a framework for extracting temporal

constraints from a given planset. Coupled with the interface to the temporal rea-

soning system, the capacity analysis system provides a very rudimentary airlift ca-

pability analysis. Some areas of this system may be improved. These areas include

the cargo-to-aircraft matching algorithm, the aircraft availability for each day, and

aircraft UTE rate considerations.

Results of Analysis

MACPLAN does not provide time estimates for the time required to move each

requirement. Only a backlog estimator is provided. The plan completion date can be

estimated from MACPLAN by finding the date when there is no backlog. A sample

backlog estimate provided by MACPLAN is shown in Figure 5.1. After asserting the

times required to move all requirements into a temporal network, the time estimated

for plan completion was found to be very close to the last date that any requirement

was available. The intervals provided by the system and the requirements used to

create them are shown in Appendix B. The requirements are moved close to their

available date because each is moved as soon as an aircraft is available to move it

and a larger requirement is not moved first. A delivery time of several days was

found for some requirements which became available on particularly busy days when

many requirements became available at once. Parts of each requirement were moved

on the days they became available, but smaller unmoved parts were pushed to the

bottom of the cargo list and not moved until there was a period of time with no new

requirements and when aircraft were still available.

Comparing the backlog estimates provided by the analysis system and MAC-

PLAN provided some interesting information. There were two methods used to
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Figure 5.1. MACPLAN Backlog Estimate

calculate the daily airlift capacity in the analysis system. One involves the cumu-

lative requirement list and the second uses each day's requirements plus unmoved

cargo from previous days. Both methods provide a larger backlog estimate than

the one given by MACPLAN. The cumulative requirement list provides a smaller

backlog of unmoved cargo than the present day plus unmoved cargo method.

The MACPLAN backlog estimate is lower because it uses the capacity of each

aircraft available on a given day to calculate the airlift capacity. This capacity is

best case and is accurate only if all aircraft are completely full for each flight. In

realistic plans, the cargo required to be moved does not come in blocks matching

the size of the available aircraft. This causes some aircraft to make flights with less

than full loads and wastes some of the airlift capability.

Both of the methods used in the capacity analysis system allocate individual

cargo requirements to individual aircraft with the airlift capacity for each day com-

puted only from the cargo moved. The difference in backlog is due to the fact that

the airlift capacity is computed based on the cargo moved instead of the capacity
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of the aircraft used to move it. For example. if a C-5 is used to transport 10 tons

of cargo, the airlift capacity is computed as the normalized ton-miles for 10 tons

instead of 47 tons which is the capacity of a C-5.

The method using the cumulative requirement list provides a smaller backlog

than the method using each day's requirements plus unmoved cargo from previous

days. This is because of the more efficient allocation of cargo to aircraft possible with

more cargo to choose from. With more cargo to choose from, less space is wasted

by using large aircraft to transport small cargo. Sample backlog graphs calculated

using the two methods are shown in Figures ref backlogi and ref backlog2. These

graphs use the same requirements and planset as the MACPLAN backlog graph in

Figure ref backlog.
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VI. RECOMMENDATIONS

Limitations of Current System

The current airlift planning analysis system provides limited data to an airlift

planner. There are several limitations in both the temporal reasoning system and

the capacity analysis system. The temporal reasoning system is not capable of

retracting information once the information is asserted. This can cause problems

when faced with rapidly changing information or when a planner wishes to see the

effects of a change in the planset. The capacity analysis system has several properties

which may result in a less-than-optimal solution. These properties include the cargo-

aircraft matching algorithm, the aircraft availability calculations, and the UTE rate

considerations for the aircraft used.

Temporal Reasoning System Limitctions. The temporal reasoning system is

restricted by information that has been asserted. Once information is asserted into

the system, it cannot be changed except by adding new constraints. This allows

many different types of information to be represented in the same manner (temporal

constraints), but does not allow for changing information. Information from separate

sources which constrain the same events will be asserted correctly, i.e., the one that

is the most restrictive will constrain the events. However, if the information changes

at a later time, the system can not erase the constraint and replace it with anotl.er

less restrictive, but still valid constraint.

The capacity analysis system does not take advantage of the disjunctive reason-

ing capability of the temporal reasoning system. Algorithms to assert disjunctions

into the temporal network based on different choices within a planset (such as choos-

ing a different aircraft) would utilize this capability. It. would also be beneficial to

track the choices which result in the different times to aid the planner in selecting

the most efficient solution.
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Capacity Analysis System Limitations. The capacity analysis system does not

always provide the optimal matching of cargo to aircraft. The system is limited by

the method used to select an aircraft to transport a requirement. The largest cargo

is considered first and is matched to the largest aircraft capable of carrying it. This

will provide one solution, but may not provide the most efficient solution to the

problem. The priorities of the requirements and the "lateness" of each requirement

are not considered in matching cargo to aircraft.

The UTE rate of the aircraft are not properly used to limit the number of

hours the plane may operate over the entire plan. Each plane will be limited to trips

within the UTE hour range of the aircraft selected for each day. However, the next

day the aircraft will be considered available at any desired location, regardless of the

final location of the aircraft on the previous day. Not tracking aircraft usage over

longer periods of time may cause the proposed solution to be infeasible in the real

world or less efficient than actually possible.

RJcommended Future Enhancements and Research

Several enhancements to the airlift analysis system are possible. A truth main-

tenance svstem (TMS) can be added to the temporal reasoning system to properly

maintain and update the system with changing information. New algorithms can

be used in the capacity analysis system to improve the performance of the system.

These improvements are discussed below along with future areas for further research

in applying temporal reasoning to planning and scheduling problems.

Temporal Reasoning System Enhancements. The temporal reasoning system,

although robust in its current state, could be improved through the addition of

a truth maintenance system (TMS). A TNIS would allow individual events to be

tracked and when the information concerr. .ng an event changes, the latest inforima-

tion could be used to update the temporal network. Currently, new information will
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constrain the network only if the new bounds are more restrictive than the old ones.

If the old information is not valid anymore, and the new bound is less restrictive

than the old one, the network must be reset to reflect these changes.

The clustering scheme used is based solely on the designator of each require-

ment and the type of cargo. Perhaps a better method could be found to cluster the

time-points into reference sets to provide a more efficient algorithm.

Capacity Analysis System Enhancements. The cargo-to-aircraft-matching al-

gorithm in the capacity analysis system currently matches the largest cargo to the

largest aircraft available. This may result in a less-than-optimal pairing of cargo

and aircraft under certain conditions. Other algorithms could be used to determine

which aircraft will carry specific cargo or even algorithms not based on matching

aircraft and cargo.

The cargo list is currently sorted in the order of largest to smallest when being

matched to airplanes. This order could be changed to consider the priority of the

cargo or the latest arrival date instead of only tonnage (or number of passengers).

The aircraft availability, or staging, is assumed to be exactly what the planner

decided on in the planset. This does not account for the time required for the aircraft

to fly back to the next cargo pickup point. may not provide an accurate account of

the location of the planes at the end of each day. If a plane is used to fly from the

US to Europe on one day, it would not be available to make the same flight the next

day. However, the current system assumes the number and type of aircraft specified

in the planset are available at the beginning of each day at any location needed. A

method of tracking the time required to return from delivering cargo and asserting

this time into the network could be implemented.

The UTE rate of each aircraft determines how many hours, on the average, the

plane is available to carry cargo on each day. This number is computed by tracking

each fleet of a type of aircraft and averaging the down time for all aircraft over long
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periods of time. Deciding how to incorporate this into the temporal network was

very difficult. An improved method of incorporating the UTE rate into the capacity

analysis system to determine how much cargo an aircraft can carry over the entire

plan would improve the system.

Future Research Areas. Future areas of research for applying temporal rea-

soning systems to planning and scheduling include improving the current system as

developed so far, extending the requirements/resources analysis to discover other

characteristics of high-level plans, and examining the issues involved in determining

the optimum methods for partitioning the events into reference sets.

This thesis focused on the analysis of a planset instead of a developed schedule.

The differences between analyzing a planset and a schedule are difficult to overcome.

Deciding what constitutes a good schedule is easier than finding a good planset.

A schedule either meets the stated requirements (all cargo delivered on time) or

it has certain violations of the requirements which require easily found solutions.

Analyzing a planset to determine if it will meet the requirements stated is more

difficult. Characteristics of the planset will influence the degree to which it can meet

the stated objectives. Finding the characteristics which most influence the ability

of a planset to meet its objectives is the key to providing a useful analysis of the

planset.

This thesis relied on the capacity analysis system to find the desired charac-

teristics of a planset. Although not complete, the airlift planning analysis system

provides some useful information about the time at which a plan may be completed.

Other characteristics of the planset may be more useful in determining the "good-

ness" of a planset and methods to find and assert them into a temporal network may

be useful. With the current temporal reasoning system, future research can focus on

finding the characteristics of a planset that are good indicators of its effectiveness.

The size of the reference sets greatly influences the computation time required
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to propagate a constraint through the network. The time required to assert a com-

plete network increased dramatically with an increase in reference set size. While no

research was accomplished in this area, future work to find the relationship between

reference set size and computation time would be beneficial.

Conclusion

Although a practical planset analysis tool was not developed in this thesis,

much useful work was accomplished. The temporal reasoning system is very robust

and could be useful for other applications. The interface between the temporal

reasoning system and the capacity analysis system provides the skeleton for a useful

temporal airlift analysis tool. By changing the existing routines or adding new ones

into the capacity analysis system, additional constraints can be easily asserted into

the temporal network. The capacity analysis system provides several alternatives

to the methods used in MACPLAN for calculating daily backlogs and many useful

routines were developed to extract temporal constraints from a planset.

The results obtained from the completed research indicates that a useful high-

level analysis of airlift plans is possible using temporal constraint propagation. This

thesis studied only a small segment of the large planning analysis domain and further

research in this area could provide significant advancements in the area of high-level

airlift planning analysis.
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Appendix A. Source Codc

The following sections contain the source code for this thesis. The code was

written i" COM.ON LISP on a Symbolics 3600 computer. Some calls are made to

functions written in MACPLAN, which are not included. Several defined functions

are not used in the present system. However, these functions were left in the source

code because they may be useful to future work in this area.

Temporal Reasoning System
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-*- Syntax: Common-lisp; Package: MAC -*-

This is an implementation of the temporal constraint network software
implemented in Common Lisp. This code was written by Jeff Clay.

A time-point is a structure with a list of durations in which the
point is in. It also has a list of in-durations which are indirect
durations the point is in. This structure corresponds to the nodes

in a temporal graph.

IMPORTANT - The time-point in each reference set that is in the
master reference set must be the earliest time-point in that
reference set. This is essential to finding the interval constraints
between two time-points in different reference sets.

(cl:defstruct (time-point (:PRINT-FUNCTION PRINT-TIME-POINT))
name
durations

in-durations
reference-set)

Print-Time-Point will print the name of the time-point

(defun PRINT-TIME-POINT (time-point stream ignore)
(format stream "<-a>" (time-point-name time-point)))

A duration is a structure with a beginning and ending time-point

and a bound. This structure corresponds to the arcs in a
temporal graph.

(cl:defstruct (duration (:PRINT-FUNCTION PRINT-DURATION))
pointi
point2

bound)

Print-Duration prints a duration with the two time-points and the bound

(defun PRINT-DURATIOI (duration stream ignore)
(format stream "<dur -a -a: -d>" (duration-pointl duration)

(duration-point2 duration)

(duration-bound duration)))

Reset-durations will reset all durations in the list passed to it

(defun reset-durations (duration-list)
(if (null duration-list)

nil

(progn
(setf (duration-pointl (car duration-list)) nil)
(setf (duration-point2 (car duration-list)) nil)

A-2



(setf (duration-boujd (car duration-list)) nil)
(reset-durations (cdr duration-list)))))

Add-Reference-Set will add a reference set to the reference sets of
the time-point

(defun add-reference-set (some-time-point ref-set)

(setf (time-point-reference-set some-time-point)
(cons ref-set (time-point-reference-set some-time-point))))

Create-Time-Point will create a new time-point with the name given
and the reference set given. The reference set must be a list.

(defun create-time-point (name ref-set)

(set name (make-time-point :name name :reference-set ref-set)))

Reset-time-point will reset a time-point to have nil durations

(defun reset-time-point (time-point)

(reset-durations (time-point-durations time-point))
(reset-durations (time-point-in-durations time-point))
(setf (time-point-durations time-point) nil)

(setf (time-point-in-durations time-point) nil)
(setf (time-point-reference-set time-point) nil))

*Master-Ref* is the identifier used for the master reference set. The
master reference set is the reference set which contains one point from
all other reference sets.

(defvar *master-ref* '(0 1 2 3))

Neighbor-Points returns all points which are connected to a certain
time-point through a duration either as ending points or beginning points.

(defun neighbor-points (time-point)
(union (mapcar #'duration-point2 (time-point-durations time-point))
(mapcar U'duration-pointl (time-point-in-durations time-point))))

Add-duration adds a duration to the list of durations that
a time-point is in

(defun add-duration (some-time-point new-duration)
(setf (time-point-durations some-time-point)

(cons new-duration (time-point-durations some-time-point))))

Add-in-duration adds a duration to the list of in-durations that

a time point is in

(defun add-in-duration (some-time-point new-in-duration)
(setf (time-point-in-durations some-time-point)

(cons new-in-duration (time-point-in-durations some-time-point))))
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Assert-bound will replace the bound on a duration if the new bound
is less than the original bound. If the new bound creates a negative
cycle, an error is created and no changes are made. A negative
cycle indicates an inconsistency in the database.

(defun assert-bound (some-duration new-bound)

(let ((current-bounds (duration-bound some-duration))
(reverse-dur (reverse-duration some-duration)))

(cond ((and reverse-dur
(bound<= (bound+ (car (last (duration-bound reverse-dur))) new-bound) 0))

(error "Negative Cycle"))
((bound< new-bound (car (last current-bounds)))

(setf (duration-bound some-duration)
(if (bound-included current-bounds (reverse-duration-bound some-duration)

new-bound)
(insert-upper-bound current-bounds new-bound)
(right-truncate-bound-list current-bounds new-bound)))

(if reverse-dur
(setf (duration-bound reverse-dur)
(left-truncate-bound-list (duration-bound reverse-dur) (- new-bound))))

(propagate-forward (duration-pointl some-duration) new-bound
(time-point-durations

(duration-point2 some-duration)))
(propagate-backward (duration-point2 some-duration) new-bound

(time-point-in-durations
(duration-pointi some-duration))))

(t
nil))))

Insert-Upper-Bound will replace the existing upper bound with the new bound
in the correct place to maintain the bounds in ascending order.

(defun insert-upper-bound (bound-list bound)

(cond ((null bound-list)
nil)
((bound< bound (car bound-list))
(cons bound (cdr bound-list)))
(t (cons (car bound-list)

(insert-upper-bound (cdr bound-list) bound)))))

Left-Truncate-Bound-List will truncate any bounds less than the new
bound in tho ht - - A .*

(defun left-truncate-bound-list (bound-list bound)
"truncate bounds less than bound"
(cond ((null bound-list) nil)
((bound< (car bound-list) bound)
(left-truncate-bound-list (cdr bound-list) bound))
(t bound-list)))
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Right-Truncate-Bound-List will truncate any bounds greater than
the new bound in the bound list

(defun right-truncate-bound-list (bound-list bound)
"truncate bounds greater than bound"
(cond ((null bound-list) nil)

((bound< (car bound-list) bound)
(cons (car bound-list) (right-truncate-bound-list (cdr bound-list) bound)))
(t nil)))

Bound-Included returns T if the bound given to it is between any of
the intervals made by the current-bounds and reverse-bounds.
Otherwise, it returns nil.

(defun bound-included (current-bounds reverse-bounds bound)
(bound-included-aux current-bounds (reverse reverse-bounds) bound))

(defun bound-included-aux (current-bounds reverse-bounds bound)
(cond ((or (null bound)

(null current-bounds))
nil)
((and (bound< bound (car current-bounds))

(bound< (- bound) (car reverse-bounds)))
t)

(t (bound-included-aux (cdr current-bounds)
(cdr reverse-bounds)
bound))))

Reverse-Duration returns the duration which is the reverse
of the duration given it as an argument.

(defun reverse-duration (some-duration)

(let ((pointi (duration-pointl some-duration))
(point2 (duration-point2 some-duration)))

(if (duration-to point2 pointl)
(duration-to point2 pointl)

nil)))

Reverse-Duration-Bound returns the bound-list of the reverse
duration of the duration given it.

(defun reverse-duration-bound (some-duration)

(let ((reverse-dur (reverse-duration some-duration)))
(if reverse-dur

(duration-bound reverse-dur)
(list nil))))

Bound< returns T if the first bound is less than the second,
otherwise, it returns nil. Null-negative? controls whether null
bounds are interpreted as infinity or negative infinity.
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(defun bound< (bound! bound2 ,optional (null-negative? nil))
(if null-negative?

(or (and (null bound!) bound2)
(and (numberp bound2) (< boundl bound2)))

(or (and (null bound2) boundl)
(and (numberp boundl) (< boundl bound2)))))

Bound<= returns t if the first bound is less than or equal to
the second bound. Otherwise, it returns nil. Null-negative?
controls whether null bounds are interpreted as infinity or
negative infinity.

(defun bound<= (boundl bound2 &optional (null-negative? nil))
(not (bound< bound2 boundl null-negative?)))

Bound+ returns the sum of two bounds. If one of the bounds is
nil (or infinity), the result is nil.

(defun bound+ (boundl bound2)
(if (and (numberp boundl) (numberp bound2))

(+ boundl bound2)
nil))

Propagate-forward will propagate a new bound forward through the
network until it has changed all affected bounds.

(defun propagate-forward (some-time-point new-bound duration-list)
(cond ((null duration-list)

nil)
((same-reference-set? some-time-point (duration-point2 (car duration-list)))
(assert-duration some-time-point (duration-point2 (car duration-list))

(bound+ new-bound
(car (last (duration-bound (car duration-list))))))

(propagate-forward some-time-point new-bound (cdr duration-list)))

(t
(propagate-forward some-time-point new-bound (cdr duration-list)))))

Propagate-backward will propagate a new bound backward through the
network until it has changed all affected bounds.

(defun propagate-backward (some-time-point new-bound duration-list)
(cond ((null duration-list)
nil)
((same-reference-set? some-time-point (duration-point! (car duration-list)))
(assert-duration (duration-pointl (car duration-list)) some-time-point

(bound+ new-bound
(car (last (duration-bound (car duration-list))))))

(propagate-backward some-time-point new-bound (cdr duration-list)))

(t
(propagate-backward some-time-point new-bound (cdr duration-list)))))
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Duration-to calls find-other-point with the list of durations
associated with time-pointl and time-point2. Find-other-point will
return the duration from time-pointi to time-point2.

(defun duration-to (time-pointl time-point2)
(if (or (null time-pointi)
(null time-point2))

nil
(find-other-point (time-point-durations time-pointi) time-point2)))

Find-other-point returns the duration that is in the list of
durations given that time-point2 is in if it is in the list

(defun find-other-point (durations time-point2)

(cond ((null durations) nil)
((eq time-point2 (duration-point2 (car durations)))

(car durations))

(t (find-other-point (cdr durations) time-point2))))

; Assert-duration will assert a duration from one time-point to
; another with the bound given it.

(defun assert-duration (point-1 point-2 bound)

(cond ((equal point-i point-2)

nil)

(t

(let ((current-duration (duration-to point-I point-2)))
(if current-duration

(assert-bound current-duration bound)

(let ((new-duration (make-duration :pointl point-I
:point2 point-2

:bound '(nil))))

(add-duration point-i new-duration)
(add-in-duration point-2 new-duration)
(assert-bound new-duration bound)

(propagate-forward point-I bound
(time-point-durations point-2))

(propagate-backward point-2 bound
(time-point-in-durations point-i))))))))

Direct-Duration-Bound returns the bounds from one tine-point
to another.

(defun direct-duration-bound (one-point other-point)
(if (or (null one-point)
(null other-point))

(list (list nil) (list nil))
(let ((direct-duration (duration-to one-point other-point)))

(if direct-duration
(list (duration-bound direct-duration)
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(reverse-duration-bound direct-duration))
(connection one-point other-point)))))

Interval-Constraint returns the intervals in which the second time-
point can follow the first time-point.

(defun interval-constraint (point1 point2)
(let ((bounds (direct-duration-bound pointl point2)))
(translate-bounds (car bounds)

(reverse (cadr bounds)))))

Translate-Bounds will translate the bounds into intervals.

(defun translate-bounds (bounds-1 bounds-2)
(cond ((or (null bounds-i)

(null bounds-2))
nil)
(t
(cons (interpret-bounds (car bounds-i)

(car bounds-2))
(translate-bounds (cdr bounds-i)

(cdr bounds-2))))))

Interpret-Bounds interprets null bounds as infinity and
numbers as numeric bounds for printing out the intervals.

(defun interpret-bounds (bound rev-bound)
(list (if (numberp rev-bound)

(- rev-bound)
nil)

(if (numberp bound)
bound
nil)))

Same-Reference-Set? returns t if the two time-points are in
the same reference set. Otherwise it returns nil.

(defun same-reference-set? (pointl point2)
(common-element (time-point-reference-set pointi)
(time-point-reference-set point2)))

Comon-element returns t if any member of one of the sets
is also in the other set.

(defn common-element (setl set2)
(cond ((null setl)
nil)
((member (car seti) set2)
t)
(t (common-element (cdr setl) set2))))
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Connection returns the intervals between two time-points that
are not in the same reference set.

(defun connection (pointl point2)
(let ((nts (sum-interval-constraint (dur-to-master pointl)
(sum-interval-constraint (master-connect pointl point2)

(dur-from-master point2)))))
(list (extract-upper-bound ints)
(extract-lower-bound ints))))

Dur-to-Master returns the intervals between the two time-points
which connect the reference set containing the provided time-point
to the master reference-set. If the provided time-point is in the
master reference set, an interval of (0 0) is returned.

(defun dur-to-master (point1)

(if (in-reference-set? pointl *master-ref*)

'((0 0))
(interval-constraint pointl

(connection-point (time-point-durations pointl)
*master-ref*
(time-point-reference-set point )))))

Master-Connect returns the interval between the two time-points in
the master reference set which connect the two reference sets containing
the given time-points.

(defun master-connect (pointl point2)

(cond ((in-reference-set? pointl *master-ref*)
(interval-constraint point1

(connection-point (time-point-durations point2)
*master-ref*

(time-point-reference-set point2))))

((in-reference-set? point2 *master-ref*)
(interval-constraint (connection-point (time-point-durations pointl)

*master-ref*

(time-point-reference-set pointl))
point2))

(t
(interval-constraint (connection-point (time-point-durations pointl)

*master-ref*

(time-point-reference-set pointl))

(connection-point (time-point-durations point2)
*master-ref*

(time-point-reference-set point2))))))

Dur-From-Master will return the intervals between the two time-points
which connect the master reference set to the reference set containing

; the provided time-point. If the provided time-point is in the master
reference set, an interval of (0 0) is returned.
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(defun dur-from-master (point2)
(if (in-reference-set? point2 *master-ref*)

'((0 0))
(interval-constraint (connestion-point (time-point-duratios point2)

*master-ref*

(time-point-reference-set point2))
point2)))

Connection-Point returns the time-point from the duration-list
which is contained in the reference set provided.

(defun connection-paint (duration-list ref-setl ref-set2)

(if duration-list
(let ((a-duration (car duration-list)))

(if (and (in-reference-set? (duration-point2 a-duration) ref-setl)
(in-reference-set? (duration-point2 a-duration) ref-set2))
(duration-point2 a-duration)
(connection-point (cdr duration-list) ref-setl ref-set2)))))

In-reference-set? returns T if the time point is in the reference set

(defun in-reference-set? (some-time-point reference-list)
(if reference-list

(if (member (car reference-list)
(time-point-reference-set some-time-point))

t
(in-reference-set? some-time-point (cdr reference-list)))))

Assert-interval will assert two bounds on the durations between
the two time-points to limit tne possible time relationship between
the two to be within the supplied interval.

(defun assert-interval (time-pointi time-point2 lower-bound upper-bound)

(if (null lower-bound)
(assert-duration time-point2 time-pointi nil)
(assert-duration time-point2 time-poin (- lower-bound)))

(assert-duration time-pointl time-point2 upper-bound))

Assert-lot-Interval will assert the appropriate bounds on durations
to assure the time interval provided does not contain the time-
points provided.

(defun assert-not-interval (time-pointl time-point2 lower-bound upper-bound)
(assert-new-interval-constraint

time-pointi time-point2
(list (list nil lower-bound) (list upper-bound nil))))

Assert-new-interval-constraint asserts the disjunction interval if
it further limits the time-points durations.

(defun assert-new-interval-constraint (pointl point2 new-int-constraint)
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(let ((merged-int-constraint
(intersect-disjoint-intervals
(interval-constraint pointl point2) new-int-constraint)))
(if (not (equal (interval-constraint pointl point2) merged-int-constraint))

(if (duration-to pointl point2)
(progn

(setf (duration-bound (duration-to pointl point2))
(extract-upper-bound merged-int-constraint))
(if (duration-to point2 pointl)

(setf (duration-bound (duration-to point2 pointl))
(reverse (extract-lover-bound merged-int-constraint)))
(progn

(let ((new-duration (make-duration :pointl point2
:point2 pointl
:bound '(nil))))

(add-duration point2 new-duration)
(add-in-duration pointl new-duration)
(setf (duration-bound new-duration)
(reverse (extract-lower-bound merged-int-constraint))))))
(propagate-interval-constraint

pointl point2 merged-int-constraint
(cl:set-difference (union (neighbor-points pointi)

(neighbor-points point2))
(list pointl point2))))
(progn

(assert-interval pointl point2 nil nil)
(assert-new-interval-constraint pointl point2 new-int-constraint))))))

Propagate-Interval-Constraint will propagate the new interval to
all other points connected to the provided time-points

(defun propagate-interval-constraint (pointl point2
new-int-constraint other-points)

(loop for point in other-points
do (if (same-reference-set? point pointi)

(assert-new-interval-constraint
pointl point
(sum-interval-constraint
new-int-constraint (interval-constraint point2 point))))
(if (same-reference-set? point point2)

(assert-new-interval-constraint
point point2
(sum-interval-constraint
new-int-constraint (interval-constraint point pointl))))))

Sum-Interval-Constraint will add tuo interval lists together to get the
appropriate sum interval

(defun sum-interval-constraint (iconl icon2)
(cl:sort (combine-intervals (interval-cross-product iconI icon2)) #'<

:key #'car))
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Interval-Cross-Product will take each interval in the first list
and add it to each interval in the second list

(defun interval-cross-product (int-constraintl int-constraint2)

(if (or (null int-constrainti)

(null int-constraint2))
nil
(append (croLs-first (car int-constraintl) int-constraint2)

(interval-cross-product (cdr int-constraintl) int-constraint2))))

Cross-First will take oie interval and add it together with each interval
in the interval-list

(defun cross-first (interval interval-list)
(if (null interval-list)

nil
(cons (list (bound+ (car interval) (caar interval-list))

(bound+ (cadr interval) (cadar interval-list)))
(cross-first interval (cdr interval-list)))))

Combine-Intervals will take a list of intervals and reduce it to the
smallest list of intervals which contain all intervals in the list.

(defun combine-intervals (interval-list)

(let ((first-interval (car interval-list))
(rest-intervals (cdr interval-list)))

(cond ((null rest-intervals) interval-list)
((no-overlap first-interval rest-intervals)
(cons first-interval (combine-intervals rest-intervals)))

(t
(combine-intervals (include-interval first-interval rest-intervals))))))

No-Overlap returns t if the provided interval does not overlap any
of the intervals in the interval-list

(defun no-overlap (interval interval-list)

(if (null interval-list)
t
(let ((lbl (car interval)) (ubl (cadr interval))

(ib2 (caar interval-list)) (ub2 (cadar interval-list)))

(cond ((bound< ubl lb2)
(no-overlap interval (cdr interval-list)))

((bound< ub2 lbi t)

(no-overlap interval (cdr interval-list)))
(t
nil)))))

Include-Interval will combine the given interval with the appropriate
interval with which it overlaps and return the list containing only

one interval for the provided interval and the overlapping interval.
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(defun include-interval (interval interval-list)

(if (null interval-list)
nil
(let (CIbl (car interval)) (ubl (cadr interval))

(Ib2 (caar interval-list)) (ub2 (cadar interval-list)))
(cond ((and (bound<= lbl Ib2 t)

(bound<= ubl ub2)

(bound<= Ib2 ubi))

(cons (list lbl ub2) (cdr interval-list)))

((and (bound<= lb2 lbl t)

(bound<= ub2 ubl)

(bound<= lbl ub2))

(cons (list ib2 ubl) (cdr interval-list)))
((and (bound<= lbl lb2 t)
(bound<= ub2 ubi))

(cons interval (cdr interval-list)))
((and (bound<= lb2 lbi t)
(bound<= ubi ub2))

(cons (list Ib2 ub2) (cdr interval-list)))
(t
(cons (car interval-list)

(include-interval interval (cdr interval-list))))))))

Intersect-Disjoint-Intervals will return the list of intervals which
contains the intersection of all intervals in both lists. If two
intervals in the lists overlap, the now list will contain only the
portion of the intervals that overlap.

(defun intersect-disjoint-intervals (interval1 interval2)

(let ((ibl (caar intervall)) (ubl (cadar intervall))
(ib2 (caar interval2)) (ub2 (cadar interval2)))

(cond ((or (null (car intervall))

(null (cp' interval2)))

nil)
((and lb2 (bound< ubi lb2))

(intersect-disjoint-intervals (cdr intervall) interval2))
((and lbl (bound< ub2 lbi))

(intersect-disjoint-intervals interval1 (cdr interval2)))

((and (bound<= 1bl lb2 t)
(bound<= ubl ub2))

(con. (list ib2 ubl)
(intersect-disjoint-intervals (cdr interval1) interval2)))

((and (bound<= lb2 lbi t)

(bound<= ub2 ubi))
(cons (list lbi ub2)

(intersect-disjoint-intervals intervall (cdr interval2))))

((and (bound< lbi lb2)

(bound< ub2 ubi))

(cons (list ib2 ub2)
(intersect-disjoint-intervals intervall (cdr interval2))))
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(t (cons (list lbi ubl)
(intersect-disjoint-intervals (cdr intervall) interval2))))))

Extract-Upper-Bound takes the upper bounds out of an interval list
so the bounds can be asserted on a duration

(defun extract-upper-bound (interval)

(cond ((null interval)
nil)
(t

(cons (cadar interval) (extract-upper-bound (cdr interval))))))

Extract-Lower-Bound takes the lower bounds out of an interval list
so the bounds can be asserted on a duration

(defun extract-lower-bound (interval)

(cond ((null interval)

nil)

((null (caar interval))

(cons nil (extract-lower-bound (cdr interval))))
(t
(cons (- (caar interval)) (extract-lower-bound (cdr interval))))))
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Capacity Analyst's System
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-*- Package: MAC; Base: 10; Mode: LISP; Syntax: Common-Lisp

(defvar *cum-rsqts* nil)
(deivar *moved-reqts* nil)

(defvar *staging-list* nil)
(defvar *reqts-list* nil)
(defvar *ac-ute-list* nil)

(defvar *un"oved-bulk* nil)
(defvar *uinmoved-oversize* nil)
(defvar *unmoved-outsize* nil)
(defvar *unmoved-pax* nil)

Cum-req-list returns a list containing all loaded requirements each in the

form (day <onload-station> <offload-station> (bulk oversize outsize pax))

(defun cum-req-list )
(cl:sort (cleanup-by-day-req-list (by-day-req-list))

:key #'car))

Cumulative-reqts requires a list of the form returned by cum-req-list.
It returns a list of the same format, but any requirement will contain
the sum of all requirements on earlier days which have the same onload

and offload stations. For example, if two requirements have the same
source and destination, and are on days 5 and 10 respectively, the
requirement on day 10 will contain the sum ol the two requirements
while the one on day 5 will only contain the requirement for day 5.

(defun cumulative-reqts ) ; NO CALLERS
(setf *cum-reqts* nil)
(let ((req-list (cum-req-list)))

(do ((i 0 (+ i 1)))

((> i (caar (last req-list))) (reverse *cum-reqts*))
(push (cons i (accumulate-reqts (reqts-to-day i req-list)))

*cum-reqts*))))

Reqts-to-day will return a list of all requirements which are
available on or before the given day. If there is duplication
of onload and offload stations, they will NOT be combined in this
functio; Accumulate-reqts will combine the requirements with
the same onload and offload stations.

(defun reqts-to-day (day req-list)

(if req-list
(if (= (caar req-list) day) ; use for single day
(if (<= (caar req-list) day) ; use for cumulative

(cons (cdar req-list)
(reqts-to-day day (cdr req-list)))

))) ;use for cumulative
(reqts-to-day day (cdr req-list))))) ; use for single day
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Cum-reqts-to-day will return a list containing the day and a
cumulative list of all requirements up to that day with all
requirements with the same onload and offload stations added
together.

(defun cum-reqts-to-day (day)
(accumulate-reqts (reqts-to-day day (cum-req-list))))

Accumulate-reqts will add all requirements in the list which have
the same onload and offload stations together into one requirement.

(defun accumulate-reqts (req-list)
(if req-list

(if (unique-stations (car req-list) (cdr req-list))
(cons (car req-list)
(accumulate-reqts (cdr req-list)))
(accumulate-reqts (add-like-reqts (car req-list) (cdr req-list))))))

Unique-stations will return T if the given req does not have the same
onload and offload stations as any other requirement in the list.

(defun unique-stations (req req-list)

(if req-list
(if (not (and (equal (car req) (caar req-list))
(equal (cadr req) (cadar req-list))))

(unique-stations req (cdr req-list)))
t))

Add-like-reqts will take the given requirement and search through the
given requirement list and find any requirement with the same onload
and offload stations and add the tonnages to the requirements in the
list.

(defun add-like-reqts (req req-list)

(if req-list
(if (and (equal (car req) (caar req-list)) ; same onload-stations

(equal (cadr req) (cadar req-list))) ; same offload stations
(accumulate-reqts (cons (list (car req) ; onload station

(cadr req) ; offload station
(add-tonnages (caddr req)

(cadr (cdar req-list)))
(append (get-load-designator req)
(get-load-designator (car req-list))))

(cdr req-list)))
(cons (car req-list)
(add-like-reqts req (cdr req-list))))))

Add-Tonnages will add the corresponding tonnages of two lists.
The lists must be of the form (BULK OVERSIZE OUTSIZE PAX) where
BULK is the tons of bulk cargo, OVERSIZE is the tons of oversize
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cargo, etc. This is the format used in this program. Add-tonnages
will add the first four elements of any two lists.

(defun add-tonnages (tons-I tons-2)

(list (+ (car tons-i) (car tons-2))
(+ (cadr tons-i) (cadr tons-2))
(+ (caddr tons-i) (caddr tons-2))
(+ (car (cdddr tons-i)) (car (cdddr tons-2)))))

Cleanup-by-day-req-list cleans up the by-day-req-list by pulling
out the day of each requirement and changing the form of the

requirement list from (onload-station offload-station (day bulk ...))
to (day onload-station offload-station (bulk ...)). This allows
easier sorting of the lists into chronological order.

(defun cleanup-by-day-req-list (by-day-req-list)

(if by-day-req-list
(cons (pull-out-day (car by-day-req-list))
(cleanup-by-day-req-list (cdr by-day-req-list)))))

Pull-out-day will pull the day out of the cargo list and place
it in the front of the list. The formats for the lists are
shown under cleanup-by-day-req-list.

(defun pull-out-day (req-list)

(cons (car (caddr req-list))
(append (list (..ar req-list) ; onload station

(cadr req-list) ; offload station
(cdr (caddr req-list))) ; cargo list

(list (get-load-designator req-list))))) ;load designator

; By-day-req-list returns a list of the loaded requirements each in the
; form (onload-station offload-station (day bulk oversize outsize pax)).

(defun by-day-req-list ()
(build-req-list (requirements)))

Build-req-list sends each requirement to add-req-to-list to build

a list of all requirements.

(defun build-req-list (reqts)

(if reqts
(add-req-to-list (car reqts)
(build-req-list (cdr reqts)))))

Add-req-to-list extract the desired data from each requirement and
adds it to the list of all requirements.

(defun add-req-to-list (requirement req-list)

(cons (list (send requirement :onload-station)
(send requirement :offioad-station)
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(cons (requirement-date requirement)

(list-tons (send requirement :cargo)))
(list (send requirement :load-designator)))

req-list))

Requirement-date calculates the available-date for each requirement.
This function currently uses the earliest-arrival-time from each
requirement. It should be modified to use the same algorithm used
by MACPLAI to calculate the available-date in tho load-requirements

function.

(defun requirement-date (requirement)
(relative-to-relative-day (send requirement :earliest-arrival-time)))

List-tons returns a list containing the tonnages for the cargo list
given it. The tonnages are in the order (bulk oversize outsize pax).
This is the order they are stored in the data base.

(defun list-tons (cargo-list)
(if cargo-list

(cons (send (cdar cargo-list) :tonnage)
(list-tons (cdr cargo-list)))))

Aircraft-staging-on-day will return a list of the aircraft scheduled
for a certain day which gives the number of aircraft which are sourced
for that day. The returned list is of the form
((<aircraft-I> #-aircraft-i) (<aircraft-2> #-aircraft-2) ... )

(defun aircraft-staging-on-day (day)
(build-staging-on-day (aircraft-staging-list) day))

(defun build-staging-on-day (staging-list day)
(if staging-list

(cons (cons (caar staging-list)
(build-ac-staging (cadar staging-list) day 0))
(build-staging-on-day (cdr staging-list) day))))

(defun build-ac-staging (ac-staging-list iay current-number-of-ac)

(if ac-staging-list
(if (<= (caar ac-staging-list) day)

(build-ac-staging (cdr ac-staging-list) day (cdar ac-staging-list))
current-number-of -ac)

current-number-of-ac))

Number-aircraft-on-day will return the number of the type of aircraft which
are sourced for the day given.

(defun number-aircraft-on-day (aircraft day)
(find-aircraft-on-day aircraft (aircraft-staging-on-day day)))

(defun find-aircraft-on-day (aircraft staging)
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(if staging
(if (equal aircraft (caar staging))

(cdar staging)
(find-aircraft-on-day aircraft (cdr staging)))))

New-run-airlift-compare is exactly like the run-airlift-compare in MACPLAN
except mine calculates the airlift capacity in a different way. This function
does not call airlift-compare to calculate the airlift capacity although the
requirements are still calculate( from airlift-compare. The airlift capacity
is calculated by normalizing only the requirements that can be moved on a
given day by the aircraft scheduled for that day.

(defun new-run-airlift-compare (begin end ,aux new-data)
(if (and *demonstration* *setup-demonstration*)

(format *dw* "-&go demonstration setup for airlift
requirement comparison-%")

(format *dw* "Gathering data for overall comparison of
capacity and requirements...-%")

(let (requirements data airlift backlog)
(setq data (cons (assoc 'requirements (airlift-compare begin end))

(list (cons 'AIRLIFT (calc-moved-reqts begin end)))))
(setq requirements (transform-reqts (cdr (assoc 'requirements data))))
(setq airlift (allocate-CS-capacity (cdr (assoc 'airlift data)) requirements))
(setq backlog (calc-airlift-backlog requirements airlift begin end))
(setq new-data (cons (cons 'requirements requirements)

(list (cons 'airlift airlift) (cons 'backlog backlog)))))
(format *dw* "Done gathering data, now displaying it...-%")
(let (plist (destination (get-phanode-instance 'we-ov-airlift-compare)))

(if (null (assoc destination *mac-windows*))
(push (list destination 'airlift-requirement-comparison) *mac-windows*))

(setq plist '((STATION-LABEL "AIRLIFT SUPPORT VS REQUIREMENTS")
(START-TIME ,begin)
(END-TIME ,end)
(DATA ,Qnew-data)))

(send (get-phanods-instance 'air-analysis-subgraphm) :undisplay 'user)
(if *expose-airlift-automatically*

(send destination :display 'user plist)
(loop for item in (send destination :children)

do (send item :display 'user plist))
(format *dv* "Air support analysis now available in WINDOWS menu

as AIRLIFT-REQUIREMENTS-COMPARISON.'%"))

Calc-uoved-rsqte vill cal:ulate the requirements that can be moved on each
day between the c-begin and c-end days. The c-begin and c-end should be in
the format of 'CXXX. The moved-requirements will be used as the airlift
capacity for the new-run-airlift-compare function.

(defun calc-moved-reqts (c-begin c-end)
(setf *nmnoved-bulk* nil)

A-20



(setf *unmoved-oversize* nil)
(setf *unmoved-outsize* nil)
(setf *unmoved-pax* nil)
(setf *moved-reqts* nil)
(let ((begin (relative-to-relative-day c-begin))

(end (relative-to-relative-day c-end)))

(do ((i begin (+ i 1)))
((> i end) (consolidate-moved-reqts (reverse *moved-reqts*)))

(push (cons i (calc-moved-reqts-for-day i)) ;(cum-reqts-to-day i)

;(aircraft-staging-on-day i))
*moved-reqts*))))

Calc-moved-reqts-for-day will calculate how many of the

requirements given it can be moved with the aircraft
staging given it. It will set *staging-list* to the staging
given it. The *staging-list* will be modified by the functions
that determine if a requirement can be moved by the aircraft
still available. When an aircraft is used, it will be subtracted
from the *staging-list*.

(defun calc-moved-reqts-for-day (day)
(list (calc-bulk-moved-for-day day)
(calc-over-moved-for-day day)
(calc-out-moved-for-day day)

(calc-pax-moved-for-day day)))

Calc-bulk-moved-for-day will return the number of tons of bulk cargo out
of the cumulative requirements for that day which can be moved by the aircraft

sourced for that day.

(defun calc-bulk-moved-for-day (day)
(setf *ac-ute-list* nil)
(setf *staging-list* (aircraft-staging-on-day day))

(setf *reqts-list*
(sort-cargo-list (append *unmoved-bulk*

(remove-empty-req (sort-req-bulk (cum-reqts-to-day day))))))
(setf *unmoved-bulk* nil)

(cargo-move :bulk-capacity day)
(convert-cargo-ute *ac-ute-list* day))

Calc-over-moved-for-day will return the number of tons of oversize cargo out
of the cumulative requirements for that day which can be moved by the aircraft
sourced for that day.

(defun calc-over-moved-for-day (day)
(setf *ac-ute-list* nil)
(setf *staging-list* (aircraft-staging-on-day day))
(setf *reqts-list*
(sort-cargo-list (append *unmoved-oversize*

(remove-empty-req (sort-req-over (cum-reqts-to-day day))))))
(setf *unmoved-oversize* nil)
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(cargo-move :oversize-capacity day)
(convert-cargo-ut. *ac-ute-list* day))

Calc-out-moved-for-day will return the number of tons of outsize cargo out
of the cumulative requirements for that day which can be moved by the aircraft
sourced for that day.

(defun calc-out-moved-for-day (day)
(setf *ac-ute-list* nil)
(setf *staging-list* (aircraft-staging-on-day day))
(setf *reqts-list*
(sort-cargo-list (append *unmoved-outsize*

(remove-empty-req (sort-req-out (cum-reqts-to-day day))))))
(setf *unmoved-outsize* nil)
(cargo-move :outsize-capacity day)
(convert-cargo-ute *ac-ute-list* day))

Calc-pax-moved-for-day will return the number passengers out
of the cumulative requirements for that day which can be moved by the aircraft
sourced for that day.

(defun calc-pax-moved-for-day (day)

(setf *ac-ute-list* nil)
(setf *staging-list* (aircraft-staging-oa-day day))
(setf *reqts-list*
(sort-cargo-list (append *unmoved-pax*

(remove-empty-req (sort-req-pax (cum-reqts-to-day day))))))
(setf *unmoved-pax* nil)
(cargo-move :pax-capacity day)

(convert-cargo-ute *ac-ute-list* day))

Cargo-move is a general purpose function to determine how much of a given
type of cargo can be moved with the aircraft staging in *staging-list* and
the requirements in *reqts-list*. The *reqts-list* is a sorted list of
the cargo of the type being considered for that day. The capacity function
passed as an argument is used to determine the capacity of each type of
aircraft for the type of cargo which is being moved. The capacity function
should be one of the following: :pax-capacity, :oversize-capacity,
:outsize-capacity, or :bulk-capacity. Cargo-move is ran completely for its
side effects of generating the *ac-ute-list* for each type of cargo. The
tons moved is then computed by convert-cargo-ute.

(defun cargo-move (capacity-function day)

(if *roqts-list*

(let ((onload (caar *reqts-list*))
(offload (cadar *reqts-list*))
(cargo-moved (move-cargo (caar *reqts-list*) ;onload station

(cadar *reqts-list*) ;offload station

(caar (cddar *reqts-list*)) ;cargo-tons
capacity-function ;capacity function
day)))
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(if cargo-moved ;if some of the requirement was moved
(+ (normalize-cargo onload off load (car cargo-moved)) ;add cargo moved to

Cprogi ;rest of cargo moved
Csetf *reqts-list* (if (cdr cargo-moved) ;remove cargo from list

(sort-cai.go-list (cons (cadr cargo-moved)
(cdr *reqts-list*)))

(cdr *reqts-list*)))
(cargo-move capacity-function day))) ;try to move next cargo

(progn ;if unable to move cargo
(cond ((equal capacity-function ':pax-capacity)
(setf *unmoved-pax* (cons (car *reqts-list*)

*unmoved-pax*)))

((equal capacity-function ':bulk-capacity)
(setf *unmoved-bulk* (cons (car *reqts-list*)

*u1nmoved-bulk*)))
((equal capacity-function ':oversize-capacity)
(setf *n1nmoved-oversize* (cons (car *reqts-lists)

*1unmoved-oversize*)))

((equal capacity-function ':c'itsize-capacity)
(hetf *unmoved-outsize* (cons (car *reqts-list*)
*inoved-oitsize*))))

(setf *reqts-list* (cdr *reqts-list*)) ;remove requirement from list
(cargo-move capacity-function day)))) ;try to move next cargo

0)) ;if no requirements left, return 0 tons to add to cumulative total

(terpri)
(print "The reqts are )

(princ *reqts-list*)
(terpri)
(princ (oval (get-uinmoved-list capacity-function)))

(terpri)
(print "This was not moved "

Cprinc (car *reqts-list*))
(terpri)

(print "The unmoved-bulk is now
(princ *inoved-bulk*)
(terpri)
(print "The unxoved-over is now
(princ *eunaoved-oversize*)
(terpri)
(print "The u1nmoved-out is now
(princ *unnoved-outsize*)
(terpri)
(print "The unmoved-paz is now
(princ iun-oved-pax*)

*(terpri)

Move-cargo will determine how many tons of the type of cargo given it
*can be moved with the aircraft sourced for that day. If an aircraft
is used to move some cargo, it will be subtracted from the sourcing

A-23



list. If all of the cargo is moved, the number of tons moved is
returned. If only part of it is moved, both the tons moved and the
remaining requirement are returned so the remaining requirement can be

added to the list of cargo which still has to be moved.

(defun move-cargo (onload offload cargo capacity-function day)
(le' ((chosen-ac (best-ac capacity-function cargo)))

(if chosen-ac
(let ((ac-capacity (send chosen-ac capacity-function)))

(cond ((>= ac-capacity cargo)
(subtract-from-staging chosen-ac)
(add-aircraft-ute chosen-ac onload offload (normalize-cargo onload

offload

cargo))

(assert-moved-req (get-load-designator (car *reqts-list*))
chosen-ac
(find-cargo-type capacity-function) day
onload
offload)

(list cargo))
(t
(subtract-from-staging chosen-ac)
(add-aircraft-ute chosen-ac onload offload (normalize-cargo onload

offload
ac-capacity))

(list ac-capacity
(list onload

offload
(list (- cargo ac-capacity))

(get-load-designator (car *reqts-list*))))))))))

(defun find-cargo-type (capacity-function)

(cond ((equal capacity-function ':pax-capacity)
'PAX-)

((equal capacity-function ':bulk-capacity)
'BULK-)

((equal capacity-function ':oversize-capacity)

'OVERSIZE-)
((equal capacity-function ':outsize-capacity)

'OUTSIZE-)))

Convert-cargo-uta will crnvert the amount of cargo moved to the amount
that can be moved based on the ute-rate of the aircraft. If some
aircraft are used to move cargo and the ute-rate is exceeded, the amount
of cargo will be cut down by the ratio of the ut-rate divided by the
hours flown in transporting the cargo.

(defun convert-cargo-ite (ute-list day)

(if ute-list
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(let ((tons (car (cddar ute-list)))
(ute-rate (aircraft-ute-rate (caar ute-list)))
(hours (cadar ute-list))
(number-aircraft (number-aircraft-on-day (caar ute-list) day)))

(+ (if (> (* ute-rate number-aircraft)

hours)

tons
(* tons (U (* ute-rate number-aircraft) nours)))

(convert-cargo-ute (cdr ute-list) day)))

0))

Add-aircraft-ute will add the number of hours required for the chosen aircraft
to fly round trip between the onload and offload stations to the list of
ute-hours used so far by each type of aircraft in this requirement.

(defun add-aircraft-ute (aircraft onload offload tons-moved)
(setf *ac-ute-list*
(add-ute *ac-ute-list*

aircraft
(* (ute-hours-one-way onload offload aircraft) 2.0)
tons-moved)))

Add-ute will search through the ute-list and find the element which contains
the aircraft chosen and then send that element to add-utb-to-ac. If there
is no element for that type of aircraft, one is added to the list.

(defun add-ute (ute-list aircraft ute-hours tons-moved)

(if ute-list
(if (equal aircraft (caar -.e-list))

(cons (add-ute-to-ac (car ute-list) ute-hours tons-moved)

(cdr ute-list))
(cons (car ute-list)
(add-ute (cdr ute-list) aircraft ute-hours tons-moved)))

(list (list aircraft ute-hours tons-moved))))

Add-ute-to-ac will add the ute-hours to the cumulative total of hours
flown by that type of aircraft so far in satisfying this requirement.

(defun add-ute-to-ac (ute-list ute-hours tons-moved)
(cons (car ute-list)

(list
(+ (cadr ute-list) ute-hours)
(+ (caddr ute-list) tons-moved),))

Best-ac will trim the aircraft list down to only those aircraft that
can carry the type of cargo necessary. It will return the aircraft
best suited to carrying the cargo provided.

(defun best-ac (capacity-function cargo-tons)

(Ichoose-best-ac (get-compatible-ac capacity-function
(remove-used-ac *staging-list*))
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capacity-function

cargo-tons))

Remove-used-ac removes any aircraft that has 0 as the staging number.

(defun remove-used-ac (staging-list)
(if staging-list

(if (> (cdar staging-list) 0)

(cons (car staging-list)
(remove-used-ac (cdr staging-list)))
(remove-used-ac (cdr staging-list)))))

Choose-best-ac takes the first aircraft in the staging list given it
and compares it to the other aircraft in the list to fird the aircraft
best suited to carry the amount of cargo given it. It will return the
aircraft with the smallest capacity of the aircraft which will carry

the amount of cargo provided.

(defun choose-best-ac (ac-list capacit)-function cargo-tons)

(if ac-list
(compare-ac (caar ac-list) (cdr ac-list) capacity-function cargo-tons)))

Compare-ac returns the aircraft with the smallest capacity among the

aircraft with a capacity larger than the cargo-tons given it. The
capacity function determines which type of cargo the function considers.

(defun compare-ac (best-ac ac-list capacity-function cargo-tons)

(if best-ac

(if ac-list
(let ((current-capacity (send best-ac capacity-function))

(next-capacity (send (caar ac-list) capacity-function)))
(cond ((= current-capacity cargo-tons)
(compare-ac best-ac

(cdr ac-list)
capacity-function
cargo-tons))

((= next-capacity cargo-tons)
(compare-ac (caar ac-list)

(cdr ac-list)
capacity-function

cargo-tons))

((and (< current-capacity cargo-tons)
(< next-capacity cargo-tons))
(compare-ac (if k> current-capacity next-capacity)

best-ac
(caar ac-list))

(cdr ac-list)
capacity-function

cargo-tons))
((and (< current-capacity cargo-tons)
(> next-capacity cargo-tons))

A-26



(compare-ac (caar ac-list)
(cdr ac-list)
capacity-function
cargo-tons))

((and (> current-capacity cargo-tons)

(< next-capacity cargo-tons))

(compare-ac best-ac

(cdr ac-list)
capacity-function

cargo-tons))
((and (> current-capacity cargo-tons)
(> next-capacity cargo-tons))

(compare-ac (if (> current-capacity next-capacity)

(caar ac-list)
best-ac)

(cdr ac-list)
capacity-function

cargo-tons))))
best-ac)

(error "There are no aircraft capable of carrying that cargo in
the force-package")))

Subtract-from-staging will subtract one from the number of aircraft
in the *staging-list*. This will make this aircraft unavailable for
moving any other requirements on this particular day. This function
modifies the value of the global variable *staging-list*.

(defun subtract-from-staging (aircraft)

(let ((staging-list *staging-list*))

(setf *staging-list* (subtract-ac aircraft staging-list))))

Subtract-ac searches through the staging-list given it and finds the
staging that corresponds to the aircraft given it. It then sends this
staging to subtract-one-ac to subtract one from the number of aircraft
sourced for that day.

(defun subtract-ac (aircraft staging-list)

(if staging-list
(if (equal aircraft (caar staging-list))

(cons (subtract-one-ac (car staging-list))
(cdr staging-list))

(cons (car staging-list)
(subtract-ac aircraft (cdr staging-list))))))

Subtract-one-ac subtracts one from the number of aircraft sourced for
this day.

(defun subtract-one-ac (ac-staging)
(cons (car ac-staging)

(- (cdr ac-staging) 1)))
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Get-compatible-ac will return a cut-down version of the staging-list

with only the aircraft capable of carrying the type of cargo in the

; capacity-function given it. The capacity function is of the form
; :bulk-capacity if bulk cargo is needed.

(defun get-compatible-ac (capacity-function staging-list)

(if staging-list
(if (> (send (caar staging-list) capacity-function) 0)

(con3 (car staging-list)
(get-compatible-ac capacity-function (cdr staging-list)))

(get-compatible-ac capacity-function (cdr staging-list)))))

These capacity functions are not used now

Aircraft-pax-capacity returns the passenger cargo capacity
of the type of aircraft given it. It returns the normal

passenger capacity if it is greater than zero. Otherwise.
it returns the accompanying capacity of the aircraft.

The system currently does not consider the accompanying capacity

of the aircraft. If the aircraft has a passenger capacity of 0,

it will not be used to transport passengers. The accompanying
capacity can be added in by using the function below which is

now commented out.

;(defun aircraft-pax-capacity (aircraft)

(let ((normal-capacity (send aircraft :pax-capacity))

(accomp-capacity (send aircraft :accompanying-capacity)))

(if (> normal-capacity 0)
normal-capacity

accomp-capacity)))

(defun aircraft-pax-capacity (aircraft)
(send aircraft :pax-capacity))

Aircraft-bulk-capacity returns the bulk cargo capacity
of the type of aircraft given it.

(defun aircraft-bulk-capacity (aircraft)
(send aircraft :bulk-capacity))

Aircraft-oversize-capacity returns the oversize cargo cap.-ity

of the type of aircraft given it.

(defan aircraft-oversize-capacity (aircraft)

(send aircraft :oversize-capacity))
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Aircraft-outsize-capacity returns the outsize cargo capacity
of the type of aircraft given it.

(defun aircraft-outsize-capacity (aircraft)
(send aircraft :outsize-capacity))

(defun remove-empty-req (cargo-list)
(if cargo-list

(if (> (get-ton-req (car cargo-list)) 0)
(cons (car cargo-list)

(remove-empty-req (cdr cargo-list)))
(remove-empty-req (cdr cargo-list)))))

(defun sort-cargo-list (cargo-list)
(cl:sort cargo-list
#,>

:key #'get-ton-req))

Sort-req-bulk will sort the requirements in the list according to the
amount of bulk cargo in the requirement with the largest first. It
will strip out the other cargo in the cargo list and return only the
tons of bulk cargo.

(defn sort-req-bulk (req-list)
(sort-cargo-list (get-bulk-req req-list)))

Sort-req-over will sort the requirements in the list according to the
amount of oversize cargo in the requirement with the largest first.

(defun sort-req-over (req-list)
(sort-cargo-list (get-over-req req-list)))

Sort-req-out will sort the requirements in the list according to the
amount of outsize cargo in the requirement with the largest first.

(defun sort-req-out (req-list)
(sort-cargo-list (get-out-req req-list)))

Sort-req-pax will sort the requirements in the list according to the
number of passengers in the requirement with the largest first.

(defun sort-req-pax (req-list)
(sort-cargo-list (get-pax-req req-list)))

(defun get-ton-req (req)
(car (caddr req)))

Get-bulk-req will return the tons of bulk cargo in the requirement given it.
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(defun get-bulk-req (req-list)

(if req-list
(cons (list (caar req-list)

(cadar req-list)
(list (caar (cddar req-list)))
(get-load-designator (car req-list))) ; load designator
(get-bulk-req (cdr req-list)))))

Get-over-req will return the tons of oversize cargo in the
requirement given it.

(defun get-over-req (req-list)
(if req-list

(cons (list (caar req-list)
(cadar req-list)
(list (cadar (cddar req-list)))
(get-load-designator (car req-list))) ; load designator
(get-over-req (cdr req-list)))))

Get-out-req will return the tons of outsize cargo in the requirement given it.

(defun get-out-req (req-list)
(if req-list

(cons (list (caar req-list)

(cadar req-list)
(list (car (cddar (cddar req-list))))
(get-load-designator (car req-list))) ; load designator
(get-out-req (cdr req-list)))))

Get-pax-req will return the number of passengers in the requirement given it

(defun get-pax-req (req-list)

(if req-list
(cons (list (caar req-list) ; onload station

(cadar req-list) ; offload station

(list (cadr (cddar (cddar req-list)))) ; pax- req
(get-load-designator (car req-list))) ; load designator
(get-pax-req (cdr req-list)))))

Aircraft-UTE-rate returns the ute rate for the aircraft given it.
It currently returns the cdar or the ute-table in the UTE-JSCP
object associated with the aircraft. If the UTE-table is
longer than 1, the UTE rate may have to be computed based on the
day of the plan. This feature is not currently supported.

(defun aircraft-ute-rate (aircraft)
(let ((ute-table (send (send aircraft :ute-jscp) :ute-table)))

(if (= (length ute-table) 1)
(cdar ute-table)
(cdar ute-table))))
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UTE-hours-one-way returns the number of hours required to fly ONE-WAY
form the onload-station to the offload station with the aircraft

(defun ute-hours-one-way (onload offload aircraft)
(U (flight-time (select-path-time (enroute-paths onload

offload))
(send aircraft :tas))
60.0))

Consolidate-moved-reqts will take a list of all requirements that

can be moved and consolidate the list into a list divided by types

of cargo. This puts the list into the same format as returned by
the airlift-compare function in MACPLAN so the MACPLAN graphing
functions can be used.

(defun consolidate-moved-reqts (moved-req-list)
(list (cons 'PAX (calc-pax moved-req-list))

(cons 'CSBULK&OVER (calc-CSbulkkover moved-req-list))
(cons 'BULK&OVER (calc-bulkkover moved-req-list))
(cons 'OUTSIZE (calc-outsize moved-req-list))))

Calc-pax consolidates all of the passenger totals in the list
given it.

(defun calc-pax (moved-req-list)

(if moved-req-list

(cons (cons (caar moved-req-list) (caddr (cddar moved-req-list)))
(calc-pax (cdr moved-req-list)))))

Calc-CSbulk&over consolidates all the cargo moved by CS's.
Not sure how to calculate what is moved by C-S's yet.

(defun calc-CSbulkkover (moved-req-list)

(if moved-req-list

(cons (cons (caar moved-req-list) 0)

(calc-CSbulkkover (cdr moved-req-list)))))

Calc-bulkkover consolidates all the bulk and oversize cargo in the

list given it.

(defun calc-bulkkover (moved-req-list)

(if moved-req-list
(cons (cons (caar moved-req-list) (+ (cadar moved-req-list)

(caddr (car moved-req-list)))) ; add bulk and oversize cargo

(calc-bulk&over (cdr moved-req-list)))))

Calc-outsize consolidates all of the outsize cargo in the list

given it.

(defun calc-outsize (moved-req-list)

(if moved-req-list
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(cons (cons (caar moved-req-list) (caddr (cdar moved-req-list)))
(calc-outsize (cdr moved-req-list)))))

Normalize cargo will return a normalized value for the tons of cargo
and the distance between the onload station and offload station.

(defun aormalize-cargo (onload offload tons)

(calc-aormal tons

(distance-between-stations onload offload)))

Calc-normal calculates the normalized value of the cargo by
dividing the product of the cargo and distance by 1000.

(defun calc-normal (cargo-tons distance)
(U (* cargo-tons distance) 1000.0))

Get-Load-Designator will return the load designator in a list of the
form (day onload offload (cargo-list) load-designator). If this list
form changes, this function can be changed without changing the rest
of the code.

(defun get-load-designator (req)

(car (last req)))
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-e- Package: MAC; Base: 10; Mode: LISP; Syntax: Common-Lisp -*-

(defvar begin-plan)
(defvar end-plan)
(defvar distances nil)
(defvar max-distance nil)

Requirements will return the requirement instances which are
presently loaded in the current MACPLAI environment. If no
requirements are loaded, it returns nil.

(defun requirements )
(plan-element-instances (get-descriptor 'requirements)))

End-station will return a list containing the onload and offload
stations for a given requirement.

(defun end-station (requirement)
(cons (send requirement :onload-station)

(list (send requirement :offload-station))))

Distance will return the distance as computed by the MAC function
great-circle-distance between the two stations given it. The stations
provided must be station instances, not just the ICAO code.

(defun distance-between-stations (stationi station2)
(great-circle-distance (latitude-to-num (send stationl :latitude))

(longitude-to-num (send stationi :longitude))
(latitude-to-num (send station2 :latitude))
(longitude-to-num (send station2 :longitude))))

Distance-station-to-group will return the distance between a station
and the station selected from the group. The distance-between-stations

function is used to calculate the distance between the stations.

(defun distance-station-to-group (station group)
(distance-between-stations station (select-station-from-group-distance group)))

Select-station-from-group-distance will select a station from the group
for the purpose of calculating the distance to the group. Now it simply
selects the first member station in the group. This should not cause a
problem since the distance to the group will be added to the distance from
the group to another station. This should produce less error than using
the distance-between-groups function which calculates the maximum distance
between stations in two groups.

(defun select-station-from-group-distance (group)
(car (send group :member-stations)))

Time-to-fly will return the time required for the given aircraft
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to fly the distance between the two stations at the TAS (True Air
Speed) given in the aircraft data base. The latitude-here and

latitude-there are used only for telling whether or not the location
provided is a station or a to-from-group. If it is a station, thj
latitude given by (send here :latitude) will not be a number. If
the location is a group, it will rcturn a number. It would be
easier if (send location :latitude) returned the same thing for
both stations and groups, but that code is written in MACPLAN and

was not modified.

(defun time-to-fly (here there tas)
(let ((latitude-here (send here :latitude))
(latitude-there (send there :latitude)))

(cond ((and (not (numberp latitude-here))
(not (numberp latitude-there)))
(U (distance-between-stations here there) (U tas 60.0)))

((and (numberp latitude-here)
(numberp latitude-there))

(U (distance-between-groups here there) (U tas 60.0)))
((and (not (numberp latitude-here))
(numberp latitude-there))

(/ (distance-station-to-group here there) (U tas 60.0)))
((and (numberp latitude-here)

(not (numberp latitude-there)))
(/ (distance-station-to-group there here) (1 tas 60.0)))

(t
nil))))

Flight-time will return the time required to fly the path provided
at the air speed provided. No provisions are made at this time for

ground time.

(defun flight-time (path tas)

(if (cadr path)
(+ (time-to-fly (car path) (cadr path) tas)

(flight-time (cdr path) tas))

0.0))

Cargo-types will return a list of the types of cargo in the
requirement given it. The list will look like
(BUT.K OUTSIZE OVERSIZE PAX) containing only the types which
are in the requirement.

(defun cargo-types (requirement)

(list-cargo-types (car (cdddr requirement))))

List-cargo-types will build a list of cargo-types which have
a tonnage of greater than zero. Even passenger (PAX) cargo
is listAd in tonnage even though the number ts the number of
people.
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(defun list-cargo-types (cargo-list)
(if cargo-list

(remove nil (list (if (> (car cargo-list) 0)

'bulk)
(if (> (cadr cargo-list) 0)

'oversize)

(if (> (caddr cargo-list) 0)
'outsize)

(if (> (cadr (cddr cargo-list)) 0)
'pax)))))

Min-tas will return the minimum TAS (True Air Speed) for all of
the aircraft in the aircraft list given to it.

(defun min-tas (ac-list)
(if ac-list

(let ((all-min-tas (mapcar #,(lambda (W) (send x :tas)) ac-list)))
(eval (cons 'min all-min-tas)))

(error "There are no aircraft in this list")))

(defun fastest-speed (cargo-types ac-list)
(min-tas (fastest-required-ac cargo-types ac-list)))

Fastest-required-ac returns a list containing the fastest planes
that can carry each type of cargo in the cargo-list.

There will be only one plane for each type of cargo.

(defun fastest-required-ac (cargo-types ac-list)
(if cargo-types

(cons (fastest-ac (compatible-ac (list (car cargo-types)) ac-list))
(fastest-required-ac (cdr cargo-types) ac-list))
'0))

Fastest-ac returns the fastest aircraft In the list

(defun fastest-ac (ac-list)
(find-fastest (car ac-list) (cdr ac-list)))

(,dafa Iind-faztest (ac ac list)

(if ac-list
(if (> (send (car ac-list) :tas)

(send ac :tas))
(find-fastest (car ac-list) (cdr ac-list))
(find-fastest ac (cdr ac-list)))

ac))

Slowest-ac returns the slowest aircraft in the list

(defun slowest-ac (ac-list)
(find-slowest (car ac-list) (cdr ac-list)))
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(defun find-slowest (ac ac-list)
(if ac-list

(if (< (send (car ac-list) :tas)
(send ac :tas))

(find-slowest (car ac-list) (cdr ac-list))
(find-slowest ac (cdr ac-list)))

ac))

Compatible-ac will return a list of all aircraft that can carry the
type of cargo in the cargo list from the aircraft list given it.
It will return a list of all aircraft that can carry any one or the
types of cargo, not only the ones that can carry all of the cargo
types.

(cefun compatible-ac (cargo ac-list)
(if ac-list

(if (ac-carry-cargo cargo (car ac-list))
(cons (car ac-list)
(compatible-ac cargo (cdr ac-list)))
(compatible-ac cargo (cdr ac-list)))))

Ac-carry-cargo returns T if the aircraft given it can carry any of
the types of cargo in the cargo list.

(defun ac-carry-cargo (cargo-types air..raft)
(if cargo-types

(let ((cargo (car cargo-types)))
(if (or (and (equal bulk cargo)

(> (send aircraft :bulk-capacity) 0))

(and (equal 'outsize cargo)
(> (send aircraft :outsize-capacity) 0))

(and (equal 'oversize cargo)
(> (send aircraft :oversize-capacity) 0))

(and (equal 'pax cargo)

(> (send aircraft :pax-capacity) 0))
t
(ac-carry-cargo (cdr cargo-types) aircraft)))
nil))

Min-onload-time will return the minimum onload time for alV aircraft
in the list given to it by finding the minimum onload time for each
specific type of cargo and then finding the maximum of these onload
times.

(defun min-onload-time (cargo-types a,--list)
(max-onload-time (min-onload-required-ac cargo-types ac-list)))

Max-onload-time will return the largest onload tine from the
aircraft in the list given to it.

(defun max-onload-time (ac-list)
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(let ((all-max-onload (mapc-r #'(lambda (x) (rend x :onload-time))

ac-list)))
(eval (cons 'max (mapcar #'(lambda x) (time-interval-to-minutes x))
all-max-onload)))))

Min-onload-required-ac returns a list of the aircraft which have

the minimum onload time for each type or cargo in the list. Only

one aircraft will be in the list for each type of cargo.

(defun min-onload-required-ac (cargo-types ac-list)
(if cargo-types

(cons (min-onload-ac (compatible-ac (list (car cargo-types)) ac-list))
(min-onload-required-ac (cdr :argo-types) ac-list))

'())

Min-onload-ac returns the aircraft with the minimum onload time
of all the aircraft in the list. The aircraft object is returned,

not just the onload time.

(defun min-onload-ac (ac-list)
(find-min-onload (car ac-list) (cdr ac-list)))

(defun find-min-onload (ac ac-list)
(if ac-list

(if (> (time-interval-to-minutes (send (car ac-list) :onload-time))
(time-interval-to-minutes (send ac :onload-time))I

(find-min-onload (car ac-list) (cdr ac-list))

(find-min-onload ac (cdr ac-list)))
ac))

Min-offload-time will return the minimum offload time for all aircraft

in the list given to it by finding the minimum offload time for each
specific type of cargo and then finding the maximum of these offload

times.

(defun min-offload-time (cargo-types ac-list)
(max-offload-time (min-offload-required-ac cargo-types ac-list)))

Max-offload-time will return the largest off'oad time from the
aircraft in the list given to it.

(defun max-offload-time (ac-list)
(let ((all-max-offload (mapcar #'(lambda (x) (send x :offload-time))

ac-list)))
(eval (cons 'max (mapcar #'(lambda (x) (time-interval-to-minutes x))

all-max-offload)))))

Min-offload-required-ac returns a list of the aircraft wl'ich have
the minimum offload time for each type or cargo in the list. Only

oni aircraft will be in the list !or each type of cargo.
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(defun min-offload-requirod-ac (cargo-types ac-list)

(if cargo-types
(cons (min-offload-ac (compatible-ac (list (car cargo-types)) ac-list))

(min-offload-required-ac (cdr cargo-types) ac-list))

'))

Min-offload-ac returns the aircraft with the minimum offload time
of all the aircraft in the list. The aircraft object is returned,
not just the offload time.

(defun min-offload-ac (ac-list)
(find-min-offload (car ac-list) (cdr ac-list)))

(defun find-min-offload (ac ac-list)

(if ac-list
(if (> (time-interval-to-minutes (send (car ac-list) :offload-time))

(time-interval-to-minutes (send ac :offload-time)))
(find-min-offload (car ac-list) (cdr ac-list))

(find-min-offload ac (cdr ac-list)))
ac))

Get-ac-list-from-db will return a list of all aircraft objects which are
referenced in the hash table associated with (get-descriptor 'aircraft)
This list contains aircraft, but unless there is a planset loaded, the
aircraft seem to have nil properties for most slots. I need to find a
way to have the hash table point to the actual objects in the database.

(defun get-ac-list-from-db )
(mapcar #'(lambda (x) (get-object 'aircraft x))
(let ((ac-list nil))

(maphash #'(lambda (key ignore)
(push key ac-list))

(cadr (assoc 'type (query-map-keys

(plan-element-database-mapper
(get-descriptor 'aircraft))))))

ac-list)))

Days-to-minutes-earliest will convert a calendar day (such as

C004) and convert it to minutes equal to the earliest part of

the day (12:01 A.M.)

(defun days-to-minutes-earliest (day)

(* (- day 1) 1440))

Assert-network will take the current requirements and planset loaded
into MACPLAN and build a temporal network by asserting the time-
points associated with each requirement.

(defun create-network 0
(create-time-point 'begin-plan *master-ref*)

(create-time-point land-plan *master-ref*)
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(create-each (requirements)))

Create-each will take each requirement from the list of requirements
returned by the function (requirements) and create the required time
points for each one.

(defun create-each (requirements)

(if requirements
(progn

(create-req-net (car requirements))
(create-each (cdr requirements)))))

Assert-one-req will take one requirement of the form
(day onload offload (cargo-list) load-designator) and assert
it into the temporal network

(defun assert-one-req (req)
(create-req-net req)
(assert-requirement req))

Create-req-net will take each requirement and get the load-
designator number (such as R24) and create the required
time-points for each requirement.

(defun create-req-net (requirement)
(let ((req-num (string (send requirement :load-designator))))
(create-time-point

(intern (make-symbol (string-append "AVAILABLE-BULK-" req-num)))
(list 0 (intern (make-symbol (string-append "BULK-" req-num)))))
(create-time-point

(intern (make-symbol (string-append "ONLOAD-BULK-" req-num)))
(list (intern (make-symbo) (string-append "BULK-" req-num)))))
(create-time-point

(intern (make-symbol (string-append "LAUNCH-BULK-" req-num)))
(list (intern (make-symbol (string-append "BULK-" req-num)))))

(create-time-point
(intern (make-symbol (string-append "LAND-BULK-" req-num)))

(list (intern (make-symbol (string-append "BULK-" req-num)))))
(create-time-point

(intern (make-symbol (string-append "OFFLOAD-BULK-" req-num)))
(list (intern (make-symbol (string-append "BULK-" req-num)))))

(create-time-point
(intern (make-symbol (string-append "AVAILABLE-OVERSIZE-" req-num)))

(list I (intern (make-symbol (string-append "OVERSIZE-" req-num)))))
(create-time-point

(intern (make-symbol (string-append "ONLOAD-OVERSIZE-" req-num)))
(list (intern (make-symbol (string-append "OVERSIZE-" req-num)))))
(create-time-point

(intern (make-symbol (string-append "LAUNCH-OVERSIZE-" req-num)))
(list (intern (make-symbol (string-append "OVERSIZE-" req-num)))))

(create-time-point
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(intern (make-symbol (string-append "LAND-OVERSIZE-" req-nu)))
(list (intern (make-symbol (string-append "OVERSIZE-" req-num)))))

(create-time-point
(intern (make-symbol (string-append "OFFLOAD-OVERSIZE-" req-num)))

(list (intern (make-symbol (string-append "OVERSIZE-" req-num)))))
(create-time-point

(intern (make-symbol (string-append "AVAILABLE-OUTSIZE-" req-num)))
(list 2 (intern (make-symbol (string-append "OUTSIZE-" req-nun)))))

(create-time-point
(intern (make-symbol (string-append "OILOAD-OUTSIZE-" req-num)))

(list (intern (make-symbol (string-append "OUTSIZE-" req-num)))))
(create-time-point

(intern (make-symbol (string-append "LAUNCH-OUTSIZE-" req-num)))
(list (intern (make-symbol (string-append "OUTSIZE-" req-num)))))

(create-time-point
(intern (make-symbol (string-append "LAND-OUTSIZE-" req-num)))

(list (intern (make-symbol (string-append "OUTSIZE-" req-num)))))
(create-time-point

(intern (make-symbol (string-append "OFFLOAD-OUTSIZE-" req-num)))
(list (intern (.make-symbol (string-append "OUTSIZE-" req-num)))))

(create-time-point
(intern (aake-symbol (string-append "AVAILABLE-PAX-" req-num)))

(list 3 (interr (make-symbol (string-append "PAX-" req-num)))))
(creat 9-t imc-po nt

(intern (make-symbol (string-append "ONLOAD-PAX-" req-num)))
(list (intern (make-symbol (string-append "PAX-" req-num)))))

(create-time-point
(intern (make-symbol (string-append "LAUNCH-PAX-" req-num)))

(list (intern (make-symbol (string-append "PAX-" req-num)))))

(create-time-point
(intern (make-symbol (string-append "LAND-PAX-" req-num)))

(list (intern (make-symbol (string-append "PAX-" req-num)))))
(create-time-point

(intern (make-symbol (string-append "OFFLOAD-PAX-" req-num)))
(list (intern (make-symbol (string-append "PAX-" req-num))))) ))

(defun assert-moved-req (req-num-list aircraft cargo-type day
onload-station offload-station)

(if req-num-list
(progn

(assert-req-moved (car req-num-list)
aircraft
cargo-type
day
onload-station
offload-station)

(assert-moved-req (cdr req-num-list)
aircraft
cargo-type

onload-station
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offload-station))))

(defun assert-req-moved (req-num aircraft cargo-type day
onload-station offload-station)

(let ((available (oval (read-from-string
(string-append "AVAILABLE-"
(string-append cargo-type req-num)))))

(onload (oval (read-from-string
(string-append "ODLOAD-"

(string-append cargo-type req-num))))
(launch (oval (read-from-string
(string-append "LAUICE-"

(string-append cargo-type req-num)))))
(land (eval (:d-ron-stz;

(string-append "LAID-"
(string-append cargo-type req-num)))))

(offload (oval (read-from-string

(string-append "OFFLOAD-"
(string-append cargo-type req-num))))))

(assert-interval available onload
(- (+ (days-to-minutes-earliest day)

(time-interval-to-minutes (send aircraft :onload-time)))
(caar (interval-constraint begin-plan available)))

nil)
(assert-interval onload launch

0
nil)

(assert-interval launcn land
(flight-time (select-path-time

(enroute-paths onload-station
offload-station))

(send aircraft :tas))
nil)

(assert-interval land offload
(time-interval-to-minutes (send aircra! .,tfload-time))
nil)

(assert-interval offload end-plan

0
nil)))

(defun assert-time-available (requirements)

(if requirements

(progn
(assert-one-available (send (car requirements) :load-designator)

(requirement-date (car requirements)))
(assert-time-available (cdr requirements)))))

(defun assert-one-available (req-num available-day)
(assert-interval begin-plan

(eval (read-from-string

(string-append "AVAILABLE-BULK-" req-num)))
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(days-to-vinutes-earliest available-day)
nil)

(assert-interval begin-plan

(eval (read-from-string
(string-append "AVAILABLE-OVERSIZE-" req-num)))

(days-to-minutes-earliest available-day)

nil)
(assert-interval begin-plan

(eval (read-from-string
(string-append "AVAILABLE-OUTSIZE-" req-num)))
(days-to-minutes-earliest available-day)

nil)
(assert-interval begin-plan

(eval (read-from-string

(string-append "AVAILABLE-PAX-" req-num)))
(days-to-minutes-earliest available-day)
nil))

Assert-requirement will take the requirement and assert the
appropriate durations between the time-points already created.

(defun assert-requirement (requirement)
(let ((possible-ac (compatible-ac (cargo-types requirement)

(get-ac-list-from-db)))
(req-num (string (car (get-load-designator requirement)))))

(let ((available (eval (read-from-string
(string-append "AVAILABLE-" req-num))))

(onload (oval (read-from-string
(string-append "ONLOAD-" req-num))))

(launch (eval (read-from-string
(string-append "LAUNCH-" req-num))))

(land (eval (read-from-string
(string-append "LAND-" req-ntun))))

(offload (eval (read-from-string
(string-append "OFFLOAD-" req-num)))) )

(assert-interval begin-plan available
(days-to-minutes-earliest (car requirement))
nil)

(assert-interval available onload

(min-onload-time
(cargo-types requirement)
possible-ac)

nil)
(assert-interval onload launch

0
nil)

(assert-interval launch land
(flight-time (select-path-time (path-list requirement))

(fastest-speed

(cargo-types requirement)
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possible-ac))
ril)

(assert-interval land offload

(min-offload-time
(cargo-types requirement)
possible-ac)

nil)
(assert-interval offload end-plan

0
nil))))

Reset-neteork will reset all time-points and durations to nil

(defun reset-network )
(reset-time-point begin-plan)

(reset-time-point end-plan)

(reset-net (requirements)))

Reset-net resets all time-points associated with the requirements.

(defun reset-net (requirements)

(if requirements
(let ((req-num (string (send (car requirements) :load-designator))))

(reset-time-point (eval (intern (make-symbol

(string-append "AVAILABLE-BULK-" req-num)))))
(reset-time-point (eval (intern (make-symbol

(string-append "ONLOAD-BULK-" req-num))))
(reset-time-point (oval (intern (make-symbol

(string-append "LAUNCH-BULK-" req-num)))))
(reset-time-point (eval (intern (make-symbol

(string-append "LAND-BULK-" req-num)))))
(reset-time-point (eval (intern (make-symbol

(string-append "OFFLOAD-BULK-" req-num)))))
(reset-time-point (oval (intern (make-symbol

(string-append "AVAILABLE-OVERSIZE-" req-nun)))))
(reset-time-point (oval (intern (make-symbol

(string-append "ONLOAD-OVERSIZE-" req-num)))))
(reset-time-point (eval (intern (make-symbol

(string-append "LAUNCH-OVERSIZE-" req-num)))))
(reset-time-point (oval (intern (make-symbol

(string-append "LAND-OVERSIZE-" req-num)))))
(reset-time-point (oval (intern (make-symbol

(string-append "OFFLOAD-OVERSIZE-" req-num)))))
(reset-time-point (oval (intern (make-symbol

(string-append "AVAILABLE-OUTSIZE-" req-num))))
(reset-time-point (oval (intern (make-symbol

(string-append "ONLOAD-OUTSIZE-" req-num)))))
(reset-time-point (oval (intern (make-symbol

(string-append "LAUNCH-OUTSIZE-" req-num)))))
(reset-time-point (oval (intern (make-symbol

(string-append "LAND-OUTSIZE-" req-num)))))
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(reset-time-point (eval (intern (make-symbol

(string-append "OFFLOAD-OUTSIZE-" req-num)))))
(reset-time-point (eval (intern (make-symbol

(string-append "AVAILABLE-PAX-" req-num)))))
(reset-time-point (eval (intern (make-symbol

(string-append "ONLOAD-PAX-" req-num)))))
(reset-time-point (eval (intern (make-symbol

(string-append "LAUNCH-PAX-" req-num)))))
(reset-time-point (eval (intern (make-symbol

(string-append "LAND-PAX-" req-num)))))
(reset-time-point (eval (intern (make-symbol

(string-append "OFFLOAD-PAX-" req-num)))))
(reset-net (cdr requirements)) )))

Groups will return all to-from-groups in the currently loaded planset

(defun groups ()
(plan-element-instances (get-descriptor 'to-from-group)))

Path-list will return a list of all stations and groups in a path

from one station to another

(defun path-list (requirement)
(let ((onload-station (cadr requirement))
(offload-station (caddr requirement)))

(enroute-paths onload-station offload-station)))

Enroute-paths will return a list of all enroute stations and groups
which are on a path from one station to another

(defun enroute-paths (onload-station offload-station)
(let ((begin-group (parent-group onload-station (groups)))
(end-group (parent-group offload-station (groups))))

(list-paths onload-station offload-station
(find-paths begin-group

end-group
(paths)))))

(send begin-group :paths)))))

List-paths will return a list containing the onload station, the
enrout. groups, and the offload station for each path in the path
list given it. If more than one path exists between two stations,
this function adds the onload and offload stations to the enroute
groups returned by enroute-paths to give complete paths.

(defun list-paths (onload-station offload-station path-list)

(if path-list
(cons (cons onload-station

(reverse (cons offload-station
(reverse (list-groups (cdr (send (car path-list)
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:links)M)))

(list-paths onload-station offload-station (cdr path-list)))))

List-groups will return the groups which are the start-groups for each
link in the link list. Notice that the first link is thrown away before
calling list-groups so the group of the onload-station is not included
in the list.

(defun list-groups (link-list)

(if link-list
(cons (send (car link-list) :start-group)

(list-groups (cdr link-list)))))

Find-paths will find all paths (PATH objects) which connect two groups.

(defun find-paths (begin-group end-group path-list)
(if path-list

(if (correct-path? begin-group end-group (car path-list))
(cons (car path-list)
(find-paths begin-group end-group (cdr path-list)))
(find-paths bagin groap end-group (cdr path-list)))))

Correct-path? will return t if the path ends in the end-group.

(defun correct-path? (begin-group end-group path)
(and (equal end-group (send path :destination))

(equal begin-group (send path :origin))))

Sclect-path-time will return a path from the list given it according
to the time required to traverse that path. The function now simply
returns the first path in the list given it. If criteria are found to
select a path, they can be added in later.

(defun select-path-time (path-list)

(car path-list))

Parent-group will return the to-from-group which contains the station.

(defun parent-group (station group-list)
(if group-list

(if (member station (send (car group-list) :member-stations))

(car group-list)
(parent-group station (cdr group-list)))))

The functions below are only for diagnostic purposes to find all

paths in a given planset

Tell-all-paths returns all paths which correspond to the
requirements. If more than one path matches a requirement,
they will all be returned.
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(defun tell-all-paths C)
(list-each-path (get-all-paths (requirements))))

Get-all-paths will get all paths for all requirements given it.

(defun get-all-paths (requirement-list)
(if requirement-list

(cons (path-list (car requirement-list))

(get-all-paths (cdr requirement-list)))))

List-each-path will take each path from the list and send them to
name-path one at a time.

(defun list-each-path (path-list)
(if path-list

(cons (name-path (car path-list))

(list-each-path (cdr path-list)))))

Name-path will take all paths which correspond to a single requirement
and send them to name-each-path.

(defun name-path (path)
(if path

(cons (name-each-path (car path))
(name-path (cdr path)))))

Name-each-path will return the names of all stations or groups which
are contained in the path sent to it.

(defun name-each-path (path)
(if path

(cons (send (car path) :name)

(name-each-path (cdr path)))))

List-requirements will return a list containing the parameters asked for
in list-one-requirement for each requirement loaded into MACPLAN.

(defun list-requirements ()
(list-each-requirement (requirements)))

List-each-requirement will take each requirement separately ana send
them to list-one-requirement.

(defun list-each-requirement (requirement-list)
(if requirement-list

(cons (list-one-requirement (car requirement-list))
(list-each-requirement (cdr requirement-list)))))

List-one-requirement will return the desired parameters for the
requirement given it.
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(defun list-one-requirement (requirement)

(list (send requirement :load-designator)
(send (send requirement :onload-station) :name)
(send (send requirement :onload-station) :icao)
(send (send requirement :offload-station) :name)
(send (send requirement :offload-station) :icao)

(cargo-types requirement)))

Paths returns all paths in the current plan.

(defun paths ()

(plan-element-instances (get-descriptor 'path)))

The paths functions below are used only to look at the paths in a

given planset

Tell-paths will return a list of the official-names of all paths
in the current plan.

(defun tell-paths ()
(list-the-path (paths)))

List-the-path sends each path one at a time to list-a-path.

(defun list-the-path (path-list)
(if path-list

(cons (list-a-path (car path-list))
(list-the-path (cdr path-list)))))

list-a-path will print out the official-name of the path given it.

(defun list-a-path (path)
(princ (send path :official-name))
(terpri))

Stations returns a list of all stations loaded into the system
(defun stations-list ()
(plan-element-instances (get-descriptor 'station)))

Force-packages returns a li&4 vf all 4o-ce-packages loaded into the system

(defun force-packages ()
(plan-element-instances (get-descriptcr 'force-package)))

; Aircraft-staging-list will return a list of the staging for each aircraft
type in the loaded force-packages. The list will contain each aircraft
object followed by the staging list for that aircraft such as

((<aircraftl> ((day . 8) (day . #))) (<aircraft2> ((day .) (day . #))))
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(defun aircraft-staging-list )
(build-staging-list (force-packages)))

Build--t-ing-list takes each force-package and sends it to one-staging

and P-".s the resulting lists together to form one final staging list

; intaining all force-packages.

(defun build-staging-list (force-packages)

(if force-packages
(cons (one-staging (car force-packages))

(build-staging-list (cdr force-packages)))))

One-staging returns the aircraft object contained in the force-package in a
list with the staging list by days.

(defun one-staging (force-package)
(list (send force-package :configuration)

(send force-package :staging)))

(defun analyze-plan (begin end)

(create-network)
(assert-time-available (requirements))

(new-run-airlift-compare begin end))
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Appendix B. Temporal Network and Requiremtents

Temporal .'Ntwork
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(interval-constraint begin-plan offload-bulk-ri)
((NIL NIL))
(interval-constraint begin-plin offload-bulk-r2)
((18040. 798161788025d0 NIL))
(interval-constraint begin-plan off load-bulk-r3)
((29674.442182995117dO NIL)
(interval-constraiat begin-plan of fload-bulk-r4)
((NIL NIL))
(interval-constraint begin-plan off load-bulk-r5)
((29621. 54182103818340 NIL))
(interval-constraint begin-plan offload-bulk-r6)
((NIL NIL))
(interval-constraint begin-plan of fload-bulk-r7)
((9463. 31275566065240 NIL))
(interval-constraint begin-plan offl~ad-bulk-r8)
((8021.541821038183d0 NIL))
(interval-conrtra- it begin-plan of fload-bulk-r~o)
((NIL NIL)
(interval-constraint; begin-plan offload-bulk-r1G,
((9616.5319543c26058do NIL))
(interval-constraint begin-plan offload-bulk-ri 1)
((NIL NIL)
(interval-constraint begin-plan offload-bulk-z 12)
((9522.950329280 127d0 NIL))
(interval-constraint begin-plan offload-bulk-r13)
((NIL NIL)
(interval-constraint begin-plan offload-bulk-r14)
((15094. 38676829998340 NIL))
(interval-constraint begin-plan offload-bulk-riS)
((NIL NIL)
(interval-constraint begin-planx off load-bulk-rW6
((12268. 84887306438840 NIL)
(interval-constraint begin-plan offload-bulk-r17)
((NIL NIL)
(interval-constraint begin-plan oifload-bulk-r18)
((2390.433583773457540 NIL))
(interval-constraint begin-plan offload-bulk-r19)
((9424.67261340059540 NIL))
(interval-constraint begin-plan off load-bulk-r20)
((5151. 63554668678140 NIL))
(interval-constraint begin-plan offload-bulk-r2l)
((6327. 877300434313d0 NIL))
(interval-constraint begin-plan of fload-bulk-r22)
((2198.10283741954740 NIL)
(interval-constraint begin-plan off load-bulk-r23)
((NIL NIL)
(interval-constraint begin-plan offload-bulk-r24)
((9631. 125683313662d0 NIL)
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Cinterval- constraint begin-plan offload-oversize-ri)
((NIL NIL))
(interval-cons :aint begin-plan offload-oversize-r2)
((16600. 798161788025d0 NIL))
(interval-constraint begin-plan offload-oversize-r3)
((NIL NIL))
(interval-constraint begin-plan offload-oversize--r4)
((41239. 90773796092d0 NIL))
(interval-constraint begin-plan offload-oversize-r5)
((NIL NIL))
(interval-constraint begin-plan offload-oversize-r6)
((NIL NIL))
(interval-constraint begin-plan offload-oversize-r7)
((8023. 3127S5660652d0 NIL))
(interval-constraint begin-plan offload-oversize-r8)
((9461.641821038183dO NIL))
(interval-constraint begin-plan offload-oversize-r9)
((9387. 036948896688d0 NIL))
(interval-constraint begin-plan offload-oversize-rl0)
((NIL NIL))
(interval-constraint begin-plan offload-oversize-ri 1)
((NIL NIL))
(interval-constraint begin-plan offload-oversize-r12)
((NIL NIL))
(interval-constraint begin-plan offload-oversize-r13)
((9672. 190544281659d0 NIL)
(interval-constraint begin-plan offload-oversize-rl4)
((NIL NIL))
(interval-constraint begin-plan of fload-oversize-riS)
((13701 .452974044103d0 NIL))
(interval-constraint begin-plan offload-overqize-r16)
((12268. 848873064388d0 NIL))
(interva. -constraint begin-plani offload-oversize-r17)
((13708. 848873064388d0 NIL))
(interval-constraint begin-plan offload-oversize-r18)
((NIL NIL)
(interval-constraint begin-plan offload-oversize-r19)
((NIL NIL)
(interval-constraint begin-plan offload-oversize-r20)
((NIL NIL))
(interval-constraint begin-plan offload-oversize-r21)
((5327. 877300434313d0 NIL))
(interval-constraint begin-plan offload-oversize-r22)
((2198. 10283741964?d0 NIL)
(interval-constraint begin-plan offload-oversize-r23)
((3635. 31954343073gd0 NIL))
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(interval-coustraint begini-plan offload-oversize-r24)
((NI. NIL))

(interval-constraint begin-plan offload-outsize-rl)
((8262.81371196148d0 NIL))
(interval-constraint begin-plan offload-outsize-r2)
((NIL NIL))
(interval-constraint begin-plan of fload-outsize-r3)
((NIL 1IL)
(interval-constraint begin-plan offloaci-outsize-r4)
((NIL NIL))
(interval-constraint begin-plan offloaci-outsize-r5)
((NIL NIL))
(interval-constraint begin-plan offload-outsize-r6)
((6855. 825689616498d0 NIL))
(interval-constraint begin-plan offload-outsize-r7)
((8142.57316985017Sd0 NIL))
(interval-constraint begin-plan of tload-outsize-r8)
((8140. 90062044697gd0 NIL))
(interval-constraint begin-plan offload-outsize-rg)
((NIL NIL)
(interval-constraint begin-plan offload-outsize-rlO)
((NIL NIL))
(interval-constraint begin-plan offload-outsize-rl 1)
((NIL NIL)
(interval-constraint begin-plan offload-outsize-r12)
((NIL NIL))
(interval-constraint begin-plan offload-outsize-r13)
((NIL NIL)
(interval-constraint begin-plan offload-outsize-r14)
((NIL NIL))
(interval-constraint begin-plan offload-outsize-r15)
((NIL NIL))
(interval-constraint begin-plan offload-outsize-r16)
((12392.246 168042273d0 NIL)
(interval-constraint begin-plan of fload-outsize-rl7)
((13832.248168042273d0 NIL))
(interval-constraint begin-plan offload-outsize-r18)
((NIL NIL)
(interval-constraint begin-plan offload-outsize-rlg)
((NIL NIL)
(interval-constraint begin-plan offload-outsize-r20)
((NIL NIL)
(interval-constraint begin-plan offload-outsize-r21)
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(C9756.884132714S1dO NIL))
(interval-constraint begin-plan offload-outsize-r22)
((5200. 9860234627086d0 NIL))
(interval-constraint begin-plan offload-outsize-r23)
((3758 .36735686873M6d NIL))
(interval-constraint begin-plan offload-outsize-r24)
((9741.063 160634334d0 NIL))

(interval-constraint begin-plan of fload-pax-ri)
((NIL NIL))
(interval-constraint begin-plan off load-pax-r2)
((NIL NIL))
(interval-constraint begin-plan of fload-pax-r3)
((28246. 40970810148d0 NIL))
(interval-constraint begin-plan off load-pax-r4)
((NIL NIL))
(interval-constraint begin-plan off load-pax-rS)
((29840. 3386943972d0 NIL))
(interval-constraint begin-plan off load-pax-r6)
((NIL NIL))
(interval-constraint begin-plan off load-pax-r7)
((9463. 312755660652dO NIL))
(interval-constraint begin-plan of fload-pax-rS)
((9481. 541821038183d0 NIL))
(interval-constraint begin-plan off load-pax-r9)
((NIL NIL))
(interval-constraint begin-plan offload-pax-r1O)
((8176.531954326O57Sd0 NIL)
(interval-constraint begin-plan offload-pax-ri 1)
((9570.8850902 17042d0 NIL))
(interval-constraint begin-plan offload-pax-r12)
((NIL NIL))
(interval-constraint begin-plan offload-pax-r13)
((NIL, NIL)
(interval-constraint begin-plan offload-pax-r14)
((16534. 386768299984d0 NIL)
(interval-constraint begin-plan off load-pax-r 1S)
((16581 . 42974044103d0 NIL)
(interval-constraint begin-plan offload-pax-r16)
((NIL NIL))
(interval-constraint begin-plan of fload-pax-r 17)
((NIL NIL)
(interval-constraint begin-plan offload-pax-rIS)
((2271. 63554668678 IdO NIL)
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(interval-constraint begin-plan offload-pax-r19)
((8008.229239801783Sdo IL))
(interval-constraint begin-plan offload-pax-r20)

((8031.63554668678ldO NIL))
(interval-constraint begin-plan offload-pax-r21)
((NIL NIL))
(interval-constraint begin-plan offload-pax-r22)
((NIL NIL))
(interval-constraint begin-plan offload-pax-r23)
((NIL NIL))
(interval-constraint begin-plan offload-pax-r24)
((NIL NIL))

(interval-constraint b-gin-plan end-plan)
((41239.90773796092d0 NIL))
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Requirem ents
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($F (LOAD-DESIGNATOR R24) (ONLOAD-STATIOI KSLC) (OFFLOAD-STATION EGUL)
(AVAILABLE-TINE C000) (EARLIEST-ARRIVAL-TIME COOS) (LATEST-ARRIVAL-TIME C007)
(PRIORITY 001) (BULK-CARGO 0) (OVERSIZE-CARGO 0) (OUTSIZE-CARGO 15) (PAX 0)
(MIN-LAUNCH-INTERVAL "0030") (MAX-LAUNCH-INTERVAL "0400") (TYPE-OFFLOAD
ENGINE-RUNIIG) (ONLOAD-LOCATION-CODE ORIGIN) (OFFLOAD-LOCATION-CODE
DESTINATION) (MISSION-PREFIX NIL) (ACFT-PERMISSION-TYPE NONE)
(ACFT-CATEGORY-CODES NIL)
($F (LOAD-DESIGIATOR R23) (ONLOAD-STATIOU KMSP) (OFFLOAD-STATION EGUN)
(AVAILABLE-TIME COIO) (EARLIEST-ARRIVAL-TIME C012) (LATEST-ARRIVAL-TIME COlS)
(PRIORITY 001) (BULK-CARGO 200) (OVERSIZE-CARGO 150) (OUTSIZE-CARGO 0) (PAX 0)
(MIN-LAUNCH-INTERVAL "0030") (MAX-LAUNCH-INTERVAL "0400") (TYPE-OFFLOAD
ENGINE-RUNNING) (ONLOAD-LOCATION-CODE ORIGIN) (OFFLOAD-LOCATION-CODE
DESTINATION) (MISSION-PREFIX NIL) (ACFT-PERNISSION-TYPE NONE)
(ACFT-CATEGORY-CODES NIL)
($F (LOAD-DESIGNATOR R22) (ONLOAD-STATION KMCF) (OFFLOAD-STATION EDAS)
(AVAILABLE-TINE COIS) (EARLIEST-ARRIVAL-TIME C020) (LATEST-ARRIVAL-TIME C022)
(PRIORITY 001) (BULK-CARGO SO) (OVERSIZE-CARGO 0) (OUTSIZE-CARGO 0) (PAX 250)
(MIN-LAUNCH-INTERVAL "0030") (MAX-LAUNCH-INTERVAL "0400") (TYPE-OFFLOAD
ENGINE-RUNING) CONLOAD-LOCATION-CODE ORIGIN) (OFFLOAD-LOCATION-CODE
DESTINATION) (MISSION-PREFIX NIL) (ACFT-PERMISSION-TYPE NONE)
(ACFT-CATEGORY-CODES NIL)
($F (LOAD-DESIGNATOR R21) (ONLOAD-STATION KSKF) (OFFLOAD-STATIUN LETO)
(AVAILABLE-TIME C020) (EARLIEST-ARRIVAL-TIME C025) (LATEST-ARRIVAL-TIME C027)
(PRIORITY 001) (BULK-CARGO 0) (OVERSIZE-CARGO 200) (OUTSIZE-CARGO 0) (PAX 0)
(MIN-LAUICH-INTERVAL "0030") (MAX-LAUNCH-INTERVAL "0400") (TYPE-OFFLOAD
ENGINE-RUNING) COULOAD-LOCATION-CODE ORIGIN) (OFFLOAD-LOCATION-COOE
DESTINATION) (MISSION-PREFIX NIL) (ACFT-PERMISSION-TYPE NONE)
(ACFT-CATEGORY-CODES NIL)
($F (LOAD-DESIGNATOR R20) (ONLOAD-STATION KMCF) (OFFLOAD-STATION LETO)
(AVAILIBLE-TIME COIS) (EARLIEST-ARRIVAL-TIME C020) (LATEST-ARRIVAL-TIME C023)
(PRIORITY 001) (BULK-CARGO SO) (OVERSIZE-CARGO 0) (OUTSIZE-CARGO 0) (PAX 50)
(MIN-LAUNCH-INTERVAL "0030") (MAX-LAUNCH-INTERVAL "0400") CTYPE-OFFLOAD
ENGINE-RUINING) (ONLOAD-LOCATION-CODE ORIGIN) (OFFLOAD-LOCATION-CODE
DESTINATION) (MISSION-PREFIX NIL) (ACFT-PERMISSION-TYPE NONE)
(ACFT-CATEGORY-CODES NIL))
(SF (LOAD-DESIGNATOR Rig) (ONLOAD-STATION KSBD) (OFFLOAD-STATION EDAH)
(AVAILABLE-TIME COQO) (EARLIEST-ARRIVAL-TIME COOS) (LATEST-ARRIVAL-TIME C007)
(PRIORITY 001) (BULK-CARGO 0) (OVERSIZE-CARGO 0) (OUTSIZE-CARGO 35) (PAX 0)
(MIN-LAUNCH-INTERVAL "0030"0) (MAX-LAUNCH-INTERVAL "0400") (TYPE-OFFLOAD
ENGINE-RUNNING) (ONLOAD-LOCATION-CODE ORIGIN) (OFFLOAD-LOCATION-CODE
DESTINATION) (MISSION-PREFIX NIL) (ACFT-PERMISSION-TYPE NONE)
(ACFT-CATEGORY-CODES NIL)
($F (LOAD-DESIGNATOR R18) (ONLOAD-STATION KCHS) (OFFLOAD-STATION EDAH)
(AVAILABLE-TIME COOO) (EARLIEST-ARRIVAL-TIME COOS) (LATEST-ARRIVAL-TIME C007)
(PRIORITY 001) (BULK-CARGO 3) (OVERSIZE-CARGO 20) (OUTSIZE-CARGO 20) (PAX SO)
(MII-LAUNCH-IUTERVAL "0030") (MAX-LAUNCH-INTERVAL "0400") (TYPE-OFFLOAD
ENGINE-RUNING) (OILOAD-LOCATION-CODE ORIGIN) (OFFLOAD-LOCATION-CODE
DESTINATION) (MISSION-PREFIX NIL) (ACFT-PERMISSION-TYPE NONE)
(ACFT-CATEGORY-CODES NIL)
($F (LOAD-DESIGNATOR R17) (ONLOAD-STATrION KMCF) (OFFLOAD-STATION LETO)
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(AVAILABLE-TIME COOO) (EARLIEST-ARRIVAL-TIME COOS) (LATEST-ARRIVAL-TIME C007)

(PRIORITY 001) (BULK-CARGO 10) (OVERSIZE-CARGO 5) (OUTSIZE-CARGO 80) (PAX 50)

(MIN-LAUNCH-INTERVAL "0030") (MAX-LAUNCH-INTERVAL "0400") (TYPE-OFFLOAD

ENGIIE-RUNIING) (ONLOAD-LOCATION-CODE ORIGIN) (OFFLOAD-LOCATION-CODE

DESTINATION) (MISSION-PREFIX NIL) (ACFT-PERMISSION-TYPE NONE)
(ACFT-CATEGORY-CODES NIL))

($F (LOAD-DESIG!ATOR RI) (ONLOAD-STATION KLFI) (OFFLOAD-STATION EGUN)

(AVAILABLE-TIME COOO) (EARLIEST-ARRIVAL-TIME COOS) (LATEST-ARRIVAL-TIME C007)

(PRIORITY 1) (BULK-CARGO 0) (UVERSIZE-CARGO 2SO) (OUTSIZE-CARGO 0) (PAX 0)

(MIN-LAUNCH-IITERVAL "0030") (MAX-LAUNCH-INTLaVAL "0400") (TYPE-OFFLOAD
ENGINE-RUNNING) (ONLOAD-LOCATION-CODE ORIGIN) (OFFLOAD-LOCATIO?-CODE

DESTINATION) (MISSION-PREFIX NIL) (ACFT-PERMISSION-TYPE NONE)

(ACFT-CATEGORY-CODES NIL))

($F (LOAD-DESIGNATOR RIS) (ONLOAD-STATION KSBD) (OFFLOAD-STATION EGUN)
(AVAILABLE-TIME COO) (EARLIEST-ARRIVAL-TIME COOS) (LATEST-ARRIVAL-TIME C007)

(PRIORITY 1) (BULK-CARGO 100) (OVERSIZE-CARGO 0) (OUTSIZE-CARGO 0) (PAX 200)

(MIN-LAUNCH-INTERVAL "0030") (MAX-LAUNCH-INTERVAL "0400") (TYPE-OFFLOAD

ENGINE-RUNNING) (ONLOAD-LOCATION-CODE ORIGIN) (OFFLOAD-LOCATION-CODE

DESTINATION) (MISSION-PREFIX NIL) (ACFT-PERMISSION-TYPE NONE)

(ACFT-CATEGORY-CODS NIL))
($F (LOAD-DESIGNAT('R R14) (ONLOAD-STATION KSLC) (OFFLOAD-STATION EDAR)

(AVAILABLE-TIME CO0) (EARLIEST-ARRIVAL-TIME COOS) (LATEST-ARRIVAL-TIME C007)

(PRIORITY 1) (BULK-CARGO 0) (OVERSIZE-CARGO 0) (OUTSIZE-CARGO 0) (PAX 370)

(MIN-LAUNCH-INTERVAL "0030") (MAX-LAUNCH-INTERVAL "0400") (TYPb-OFFLOAD

ENGINE-RUNNING) (ONLOAD-LOCATION-CODE ORIGIN) (OFFLOAD-LOCATION-CODE

DESTINATION) (MISSION-PREFIX NIl) (ACFT-PERMISSION-TYPE NONE)

(ACFT-CATEGORY-CODES NIL))
($F (LOAD-DESIGNATOR R13) (ONLOAD-STATION KTTK) (OFFLOAD-STATION EDAR)

(AVAILABLE-TIME COOO) (EARLIEST-ARRIVAL-TIKi COOS) (LATEST-ARRIVAL-TIME CO07)

(PRIORITY 1) (BULK-CARGO 300) (OVERSIZE-CARGO 0) (OUTSIZE-CARGO 0) (PAX 0)

(MIN-LAUNCH-INTERVAL "0030") (MAX-LAUNCH-INTERVAL "0400") (TYPE-OFFLOAD

ENGIIE-RUNNING) (OILOAD-LOCATION-CODE ORIGIN) (OFFLOAD-LOCATION-CODE

DESTINATION) (MISSION-PREFIX NIL) (ACFT-PERMISSION-TYPE NONE)

(ACFT-CATEGORY-CODES NIL))

($F (LOAD-DESIGNATOR R12) (ONLOAD-STATION KTCM) (OFFLOAD-STATION EGUN)

(AVAILABLE-TIME CO0O) (EARLIEST-ARRIVAL-TIME COOS) (LATEST-ARRIVAL-TIME C007)
(PRIORITY 1) (BULK-CARGO 0) (OVERSIZE-CARGO 200) (OUTSIZE-CARGO 0) (PAX 0)
(MIN-LAUNCH-INTERVAL "0030") (MAX-LAUNCH-INTERVAL "0400") (TYPE-OFFLOAD

ENGINE-RUNNING) (ONLOAD-LOCATION-CODE ORIGIN) (OFFLOAD-LOCATION-CODE
DESTINATION) (MISSION-PREFIX NIL) (ACFT-PERMISSION-TYPE NONE)
(ACFT-CATEGORY-CODES NIL))
($F (LOAD-DESIGNATOR RI) (ONLOAD-STATION KJFK) (OFFLOAD-STATION EGUN)
(AVAILABLE-TIE COOO) (EARLIEST-ARRIVAL-TIME COWl) (LATEST-ARRIVAL-TIME COiW)
(PRIORITY 1) (BULK-CARGO 100) (OVERSIZE-CARGO 0) (OUTSIZE-CARGO 0) (PAX 350)
(MIN-LAUNCH-INTERVAL "0030") (MAX-LAUNCH-INTERVAL "0400") (TYPE-OFFLOAD
ENGINE-RUNNING) (ONLOAD-LOCATION-CODE ORIGIN) (OFFLOAD-LOCATION-CODE
DESTINATION) (MISSION-PREFIX NIL) (ACFT-PERMISSION-TYPE NONE)
(ACFT-CATEGORY-CODES NIL))
($F (LOAD-DESIGNATOR RIO) (ONLOAD-STATION KJFK) (OFFLOAD-STATION EDAF)
(AVAILABLE-TIME C007) (EARLIEST-ARRIVAL-TIME Co1) (LATEST-ARRIVAL-TIME COC)
(PRIORITY 1) (BULK-CARGO 0) (OVERSIZE-CARGO 5) (OUTSIZE-CARGO 0) (PAX 350)
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(MIN-LAUNCH-INTERVAL "0030") (MAX-LAUNCH-INTERVAL "0400") (TYPE-OFFLOAD

ENGINE-RUIIING) (ONLOAD-LOCATION-CODE ORIGIN) (OFFLOAD-LOCATION-CODE

DESTINATION) (MISSION-PREFIX NIL) (ACFT-PERMISSION-TYPE NONE)

(ACFT-CATEGORY-CODES NIL)

($F (LOAD-DESIGNATOR R9) (ONLOAD-STATION KWRI) (OFFLOAD-STATION EDAF)

(AVAILABLE-TIME C008) (EARLIEST-ARRIVAL-TIME C009) (LATEST-ARRIVAL-TIME C009)
(PRIORITY 1) (BULK-CARGO 20) (OVERSIZE-CARGO 15) (OUTSIZE-CARGO 55) (PAX 0)
(MIN-LAUNCH-INTERVAL "0030") (MAX-LAUNCB-INTERVAL "0400") (TYPE-OFFLOAD

ENGINE-RUNNING) (ONLOAD-LOCATION-CODE ORIGIN) (OFFLOAD-LOCATION-CODE
DESTINATION) (MISSION-PREFIX NIL) (ACFT-PERNISSION-TYPE NONE)
(ACFT-CATEGORY-CODES NIL))
($F (LOAD-DESIGNATOR RS) (ONLOAD-STATION KWRI) (OFFLOAD-STATION EDAF)
(AVAILABLE-TIME C006) (EARLIEST-ARRIVAL-TIME COIO) (LATEST-ARRIVAL-TIME C010)

(PRIORITY 1) (BULK-CARGO 0) (OVERSIZE-CARGO 5) (OUTSIZE-CARGO 80) (PAX 0)
(MIN-LAUNCH-INTERVAL "0030") (MAX-LAUNCH-INTERVAL "0400") (TYPE-OFFLOAD
ENGINE-RUNNING) (ONLOAD-LOCATION-CODE ORIGIN) (OFFLOAD-LOCATION-CODE
DESTINATION) (MISSION-PREFIX NIL) (ACFT-PERMISSION-TYPE NCNE)
(ACFT-CATEGORY-CODES NIL))
($F (LOAD-DESIGNATOR R7) (ONLOAD-STATION KSTL) (OFFLOAD-STATION EDAF)
(AVAILABLE-TIME COOO) (EARLIEST-ARRIVAL-TIME COOl) (LATEST-ARRIVAL-TIME COOl)
(PRIORITY 1) (BULK-CARGO 76) (OVERSIZE-CARGO 0) (OUTSIZE-CARGO 0) (PAX 370)
(MIN-LAUNCH-INTERVAL "0030") (MAX-LAUNCH-INTERVAL "0400") (TYPE-OFFLOAD

ENGINE-RUNNING) (ONLOAD-LOCATION-CODE ORIGIN) (OFFLOAD-LOCATION-CODE
DESTINATION) (MISSION-PREFIX NIL) (ACFT-PERMISSION-TYPE NONE)
(ACFT-CATEGORY-CODES NIL))
($F (LOAD-DESIGNATOR R6) (ONLOAD-STATION KSTL) (OFFLOAD-STATION EGUN)
(AVAILABLE-TIME COOO) (EARLIEST-ARRIVAL-TIME COOS) (LATEST-ARRIVAL-TIME COOS)
(PRIORITY 1) (BULK-CARGO 100) (OVERSIZE-CARGO 0) (OUTSIZE-CARGO 0) (PAX 310)
(MIN-LAUNCH-INTERVAL "0030") (MAX-LAUNCH-INTERVAL "0400") (TYPE-OFFLOAD
ENGINE-RUNNING) (ONLOAD-LOCATION-CODE ORIGIN) (OFFLOAD-LOCATION-CODE
DESTINATION) (MISSION-PREFIX NIL) (ACFT-PERMISSION-TYPE NONE)
(ACFT-CATEGORY-CODES NIL))
($F (LOAD-DESIGNATOR R5) (ONLOAD-STATION KSTL) (OFFLOAD-STATION EDAF)
(AVAILABLE-TIME COOO) (EARLIEST-ARRIVAL-TIME C004) (LATEST-ARRIVAL-TIME C004)
(PRIORITY 1) (BULK-CARGO 50) (OVERSIZE-CARGO 0) (OUTSIZE-CARGO 0) (PAX 370)
(MIN-LAUNCH-INTERVAL "0030") (MAX-LAUNCH-INTERVAL "0400") (TYPE-OFFLOAD
ENGINE-RUNNING) (ONLOAD-LOCATION-CODE ORIGIN) (OFFLOAD-LOCATION-CODE
DESTINATION) (MISSION-PREFIX NIL) (ACFT-PERMISSION-TYPE NONE)
(ACFT--CATEGORY-CODES NIL))

($F (LOAD-DESIGNATOR R4) (ONLOAD-STATION KSUU) (OFFLOAD-STATION EGUN)
(AVAILABLE-TINE COOO) (EARLIEST-ARRIVAL-TIME C004) (LATEST-ARRIVAL-TIME C004)
(PRIORITY 1) (BULK-CARGO 10) (OVERSIZE-CARGO 5) (OUTSIZE-CARGO 50) (PAX 0)
(MIN-LAUNCH-INTERVAL "0030") (MAX-LAUNCH-INTERVAL "(.,00") (TYPE-OFFLOAD
ENGINE-RUNNING) (ONLOAD-LOCATION-CODE ORIGIN) (OFFLOAD-LOCATION-CODE
DESTINATION) (MISSION-PREFIX NIL) (ACFT-PERMISSION-TYPE NONE)

(ACFT-CATEGORY-CODES NIL))
($F (LOAD-DESIGNATOR R3) (ONLOAD-STATION KDOV) (OFFLOAD-STATION EDAF)
(AVAILABLE-TIME COO0) (EARLIEST-ARRIVAL-TIME C002) (LATEST-ARRIVAL-TIME C002)
(PRIORITY 1) (BULK-CARGO 10) (OVERSIZE-CARGO 10) (OUTSIZE-CARGO 75) (PAX 0)
(MIN-LAUNCH-INTERVAL "0030") (MAX-LAUNCH-INTERVAL "0400") (TYPE-OFFLOAD
ENGINE-RUNNING) (ONLOAD-LOCATION-CODE ORIGIN) (OFFLOAD-LOCATION-CODE
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DESTINATION) (MISSION-PREFIX NIL) (ACFT-PERMISSION-TYPE NONE)
(ACF-r-rATEGORY-CODES NIL))
($F (LOAL-DESIGNATOR R2) (ONLOAD-STATION KDOV) (OFFLOAD-STATION EDAR)
(AVAILABLE-TIME COQO) (EARLIEST-ARRIVAL-TIME C003) (LATEST-ARRIVAL-TIME C003)
(PRIORITY 1) (BULK-CARGO 0) (OVERSIZE-CARGO 20) (OUTSIZE-CARGO 30) (PAX 0)
(MIN-LAUICH-IITERVAL "0030") (MAX-LAUNCH-INTERVAL "0400") (TYPE-OFFLOAD
ENGINE-RUNIIG) CONLOAD-LOCATION-CODE ORIGIN) (OFFLOAD-LOCATION-CODE
DESTINATION) (MISSION-PREFIX NIL) (ACFT-PERMISSION-TYPE NONE)
(ACFT-CATEGORY-CODES NIL)
($F (LOAD-DESIGNATOR RI) (ONLOAD-STATION KSUU) (OFFLOAD-STATION EDAF)
(AVAILABLE-TIME COOO) (EARLIEST-ARRIVAL-TIME COOS) (LATEST-ARRIVAL-TIME COOS)
(PRIORITY 1) (BULK-CARGO 10) (OVERSIZE-CARGO 0) (OUTSIZE-CARGO 60) (PAX 0)
(MIN-LAUICE-INTERVAL "0030") (MAX-LAUNCH-INTERVAL "0400') (TYPE-OFFLOAD
ENGINE-RUNNING) (ONLOAD-LOCATION-CODE ORIGIN) (OFFLOAD-LOCATION-CODE
DESTINATION) (MISSION-PREFIX NIL) (ACFT-PERNISSION-TYPE NONE)
(ACFT-CATEGORY-CODES NIL)
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L[:CI SFlED

ABSTRACT

Developing efficient airlift plans for large -peraticns
is difficult even for experienced planners. line is _

zritical and days or hours may make the differerce between
success and failure. Airlift plans are developed and
refined through a repetitive cycle to produce usable
schedules. A planner selects resources for a plan, sevelccs

-rial schedule, and analyzes the schedule for w'efnesseas.
s process is very time-consuming and a method is needed

't nayze airlift plans and provide useful feedback earl;
the planning process. Temporal reasoning proviies a
:eel mechanism for such analysis. Different t'vces of

tceoral constraints can be inserted into a netwdork of
irlift events to provide time bounds on execution of tne
.plete plan. For this purpose we developed a general
t~~or constraint reasoner and a set of mechanisns fsr
&er~vng temporal information from airlift requirenents an

Fri'al schedule specifications. Physical limitatrons or
--e craft and operating facilities as ;iell s t e

'-ility of cargo all provide constraints on .:ne
events may occur. These constraints ma --e

, -ed to fly from one location to another 3r
-waiting for an aircraft to be loaded. Ccmca r..:-. -orc,

rcmu irements with airlift capacity over time provides
dditional constraints. The advantage of using a tenporal
.:nstraint network as the underlying representation is its
_ ::I.ty to accommodate various sources of information about
..e relationships between events in a plan. By asserting
.oral information about specific events in an airlift

-an, the planner can assess the impact of high-level
z'anning decisions.
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